SLE and CFT

Mitsuhiro Kato @ QFT2005

1. Introduction

Critical phenomena

Conformal Field Theory (CFT)

Algebraic approach, field theory, BPZ(1984)

Stochastic Loewner Evolution (SLE)

Geometrical approach, stochastic process, Schramm(2000)

Percolation

Consider triangular lattice whose site is colored black with probability p or white with probability 1-p. Convenient to consider dual lattice whose face (hexagon) is colored accordingly.

Study clustering property of colored faces.

 $p
ightarrow p_c$: percolation threshold at which mean cluster size diverge

Crossing probability

 $P(\gamma_1, \gamma_2)$ is a function only of cross-ratio $\eta = \frac{(z_1 - z_2)(z_3 - z_4)}{(z_1 - z_3)(z_2 - z_4)}$

$$P = \frac{\Gamma(\frac{2}{3})}{\Gamma(\frac{4}{3})\Gamma(\frac{1}{3})} \eta^{1/3} {}_{2}F_{1}(\frac{1}{3}, \frac{2}{3}, \frac{4}{3}; \eta)$$

SLE treats cluster boundary via stochastic process.

Plan of the talk

1. Introduction

2. SLE

3. Critical models

4. Relation to CFT

5. Remarks

2. SLE

Hull

A compact subset \mathbf{K} in \mathbf{H} s.t.

 $H \setminus K \text{ is simply connected, } \qquad K = \overline{K \cap H}$ is called a **hull**.

Conformal map

For any hull K, there exists a unique conformal map

$$g_{\mathsf{K}} : \mathbf{H} \setminus \mathbf{K} \to \mathbf{H}$$

$$\lim_{z \to \infty} (g_{\mathsf{K}}(z) - z) = 0$$

This map has an expansion for $z \to \infty$

$$g_{\mathsf{K}}(z) = z + \frac{a_1}{z} + \dots + \frac{a_n}{z^n} + \dots$$

 $a_1 = a_1(\mathbf{K})$ is called **capacity** of the hull \mathbf{K} .

Loewner equation

 \boldsymbol{H}

 $K_t = H \setminus H_t$

$$U_t = g_t(\gamma(t))$$

Let $\gamma(t)$ be parametrized s.t. $a_1(K_t) = 2t$. Then

$$\frac{\partial}{\partial t}g_t(z) = \frac{2}{g_t(z) - U_t}, \qquad g_0(z) = z$$

example

$$U_t = 0$$
 case

$$\frac{\partial}{\partial t}g_t(z) = \frac{2}{g_t(z)}, \qquad g_0(z) = z$$

$$g_t(z) = \sqrt{z^2 + 4t}$$

$$\gamma(t) = 2i\sqrt{t}$$

SLE

$$\frac{\partial}{\partial t}g_t(z) = \frac{2}{g_t(z) - \sqrt{\kappa}B_t}, \qquad g_0(z) = z$$

where B_t is standard Brawnian motion on ${\bf R}$, κ is a real parameter.

Alternatively, for
$$\widehat{g}_t(z)=g_t(z)-\sqrt{\kappa}B_t$$

$$d\widehat{g}_t(z)=\frac{2}{\widehat{g}_t(z)}dt-\sqrt{\kappa}dB_t$$

Brawnian motion

For
$$U_t = \sqrt{\kappa}B_t$$

$$\langle \langle U_t \rangle \rangle = 0, \qquad \langle \langle U_{t_1} U_{t_2} \rangle \rangle = \kappa |t_1 - t_2|$$

Thus

$$\langle\langle dU_t dU_t \rangle\rangle = \kappa dt$$

Itô formula

Suppose X_t satisfies stochastic differential eq.

$$dX_t = a(X_t, t)dt + b(X_t, t)dB_t$$

Then for a function $f(X_t)$

$$df = (af' + \frac{1}{2}b^2f'')dt + bf'dB_t$$

SLE trace

Phases of SLE

duality conjecture

$$\partial \mathbf{K}_t$$
 for $\kappa > 4$ \Leftrightarrow SLE trace for $\hat{\kappa} = 16/\kappa$ < 4

Hausdorff dimensions

$$d_H = \begin{cases} 1 + \kappa/8 & (\kappa < 8) \\ 2 & (\kappa > 8) \end{cases}$$

Basic properties

Denote measure $\mu(\gamma; D, r_1, r_2)$ for

Property 1 (Martingale)

$$\mu(\gamma_2|\gamma_1; D, r_1, r_2) = \mu(\gamma_2; D \setminus \gamma_1, \tau, r_2)$$

Property 2 Conformal invariance

$$(\Phi * \mu)(\gamma; D, r_1, r_2) = \mu(\Phi(\gamma); D', r'_1, r'_2)$$

Example calculation with SLE

Schramm's formula

Probability that γ passes to the left of a given point

$$P(\zeta, \overline{\zeta}; a_0)$$

For infinitesimal dt,

$$g_{dt}$$
 : {remainder of γ } $\rightarrow \gamma'$

By prop. 1 and 2, it has same measure as SLE started from $a_{dt} = a_0 + \sqrt{\kappa} dB_t$

$$\zeta \to g_{dt}(\zeta) = \zeta + \frac{2dt}{\zeta - a_0}$$

 γ' lies to the left of ζ' iff γ does of ζ

$$P(\zeta, \overline{\zeta}; a_0) = \left\langle \left\langle P\left(\zeta + \frac{2dt}{\zeta - a_0}, \overline{\zeta} + \frac{2dt}{\overline{\zeta} - a_0}; a_0 + \sqrt{\kappa} dB_t \right) \right\rangle \right\rangle$$

over Brownian motion dB_t up to time dt

Using $\langle \langle dB_t \rangle \rangle = 0$ and $\langle \langle (dB_t)^2 \rangle \rangle = dt$, one obtains

$$\left(\frac{2}{\zeta - a_0} \frac{\partial}{\partial \zeta} + \frac{2}{\overline{\zeta} - a_0} \frac{\partial}{\partial \overline{\zeta}} + \frac{\kappa}{2} \frac{\partial^2}{\partial a_0^2}\right) P(\zeta, \overline{\zeta}; a_0) = 0$$

By scale inv., P depends only on $\theta = \arg(\zeta - a_0)$

→ linear 2nd-order ordinary diff. eq. (hypergeometric)

With b.c.
$$P(\theta = \pi) = 0$$
, $P(\theta = 0) = 1$

$$\to P = \frac{1}{2} + \frac{\Gamma(2/3)}{\sqrt{\pi}\Gamma(1/6)}(\cot\theta) \, _2F_1\left(\frac{1}{2}, \frac{2}{3}, \frac{3}{2}; -\cot^2\theta\right)$$

3. Critical Models

- $\kappa = 2$ loop-erased random walk
- $\kappa = 8/3$ self-avoiding walk*
- $\kappa = 3$ cluster boundary in Ising model*
- $\kappa = 4$ BCSOS model of roughening transition* (4-state Potts), harmonic explorer, dual to the KT transition in XY model*
- $\kappa = 6$ cluster boundary in critical percolation
- $\kappa=8$ Peano curve associated with uniform spanning tree

q-states Potts model

$$Z = \sum_{\{s\}} \exp\left(eta \sum_{\langle j,k \rangle} \delta_{s_j,s_k}\right)$$

$$= \sum_{\{s\}} \prod_{\langle j,k \rangle} \left(1 + (e^{eta} - 1)\delta_{s_j,s_k}\right)$$

$$= \sum_{\{s\}} (e^{eta} - 1)^b q^c$$
graphs

$$q = 2 + 2\cos(8\pi/\kappa)$$

4. Relation to CFT

BCFT

Hilbert space of BCFT = $\{\psi_{\Gamma}\}$ on Γ

$$|0\rangle = \int [d\psi'_{\Gamma}] \int_{\psi_{\Gamma} = \psi'_{\Gamma}} [d\psi] e^{-S[\psi]} |\psi'_{\Gamma}\rangle$$

$$|\phi\rangle = \int [d\psi'_{\Gamma}] \int_{\psi_{\Gamma} = \psi'_{\Gamma}} [d\psi] \phi(0) e^{-S[\psi]} |\psi'_{\Gamma}\rangle$$

$$L_n|\phi\rangle = \int [d\psi'_{\Gamma}] \int_{\psi_{\Gamma} = \psi'_{\Gamma}} [d\psi] \int_C \frac{dz}{2\pi i} z^{n+1} T(z) \phi(0) e^{-S[\psi]} |\psi'_{\Gamma}\rangle$$

Insertion of a boundary condition changing operator

 $d\mu(\gamma_t)$ is given by the path-integral in **H**.

 $|h\rangle$ is independent of t.

Measure is also determined by SLE

$$d\widehat{g}_t = \frac{2dt}{\widehat{g}_t} - \sqrt{\kappa} \, dB_t$$

This is an infinitesimal conformal mapping which corresponds to the insertion $(1/2\pi i) \int (2dt/z - \sqrt{\kappa} \, dB_t) T(z)$. Thus for $t_1 < t$

$$|g_{t_1}(\gamma_t)\rangle = \operatorname{T} \exp\left(\int_0^{t_1} (2L_{-2}dt' - L_{-1}\sqrt{\kappa} \, dB_{t'})\right) |\gamma_t\rangle$$

```
(measure on \gamma_t)
= (\text{measure on } \gamma_t \setminus \gamma_{t_1}, \text{ conditioned on } \gamma_{t_1})
\times (\text{measure on } \gamma_{t_1})
= (\text{measure on } g_{t_1}(\gamma_t)) \times (\text{measure on } \gamma_{t_1})
```

$$|h_{t}\rangle =$$

$$\int d\mu(g_{t_{1}}(\gamma_{t})) \int d\mu(\sqrt{\kappa}B_{t'\in[0,t_{1}]}) \mathsf{T}e^{\int_{t_{1}}^{0}(2L_{-2}dt'-L_{-1}\sqrt{\kappa}dB_{t'})} |g_{t_{1}}(\gamma_{t})\rangle$$

$$\downarrow$$

$$|h_{t}\rangle = \exp\left(-(2L_{-2} - \frac{\kappa}{2}L_{-1}^{2})t_{1}\right) |h_{t-t_{1}}\rangle$$

However, $|h_t\rangle$ is independent of t.

Thus

$$(2L_{-2} - \frac{\kappa}{2}L_{-1}^2)|h\rangle = 0$$

$$\downarrow h = h_{2,1} = \frac{6 - \kappa}{2\kappa}$$

$$c = 13 - 6(\frac{\kappa}{2} + \frac{2}{\kappa})$$

$$P(\zeta; a_0) = \frac{\langle \phi_{2,1}(a_0) O(\zeta) \phi_{2,1}(\infty) \rangle}{\langle \phi_{2,1}(a_0) \phi_{2,1}(\infty) \rangle}$$

5. Remarks

A generalization

SLE $(\kappa, \vec{\rho})$: a minimal generalization of SLE which retains self-similarity $\sigma^{-1}g_{\sigma^2t}(\sigma z)$

$$dW_t = \sqrt{\kappa} dB_t - \sum_{j=1}^n \frac{\rho_j dt}{X_t^{(j)}}$$
$$dX_t^{(j)} = \frac{2dt}{X_t^{(j)}} - dW_t$$

This is a special case of

$$dW_t = \sqrt{\kappa} dB_t - J_t^x(0)dt$$

$$(2L_{-2} - \frac{\kappa}{2}L_{-1}^2 - J_{-1}L_{-1})|h\rangle = 0 \qquad (J_{-1} = J_0^x(0))$$
$$J^{\mu} \propto \epsilon^{\mu\nu} \partial_{\nu} \phi$$

 \longrightarrow

 $\kappa=4$ case free field with piecewise constant Dirichlet b.c.

 $\kappa \neq 4$ case Coulomb gas representation.

Review articles

G.F.Lawler; An introduction to the stochastic Loewner evolution, http://www.math.duke.edu/~jose/papers.html, 2001.

W.Kager, B.Nienhuis; A guide to stochastic Löwner evolution and its applications, math-ph/0312056.

J.Cardy; SLE for theoretical physicists, cond-mat/0503313.