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1. Introduction



Critical phenomena

e Conformal Field Theory (CFT)

Algebraic approach, field theory, BPZ(1984)

e Stochastic Loewner Evolution (SLE)

Geometrical approach, stochastic process, Schramm(2000)



Percolation

Consider triangular lattice whose site is colored black
with probability p or white with probabilty 1 — p.
Convenient to consider dual lattice whose face (hexagon)

IS colored accordingly.

Study clustering property of colored faces.

p — pc . percolation threshold at which mean cluster

Size diverge






Crossing probability
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SLE treats cluster boundary via stochastic process.
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2. SLE



Hull

A compact subset K in H s.t.
H \ K is simply connected,
is called a hull.

gk(2)




Conformal map

For any hull K, there exists a unique conformal map

g« : H\K —-H
im (g(z) —2) =0

00

This map has an expansion for z — oo

g(2) =2+ D Mg

a1 = a1 (K) is called capacity of the hull K.
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A

H, H

Loewner equation

K, =H\H,

U = g¢((1))
Let ~v(t) be parametrized s.t. a1(K¢) = 2t. Then
0 2

G = () =2




example

U; = 0 case

2
g1(z)’

S (=) = 90(=) = -

g1(z) = 22 + 4t

~(t) = 2iVt




SLE

O ()= — 2
ot T gi(2) — EB;

where B; Is standard Brawnian motion on R,

g90(z) =z

k 1S a real parameter.

Alternatively, for gi(z) = g+(z) — \/k B4

dgi(z) = dt — +/kdBy

gi(2)
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Brawnian motion
For U; = /KBy

(Ut)) =0, (U, Usy)) = Klt1 — to]

Thus

<<dUtht>> = rdt
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ItOo formula

Suppose X; satisfies stochastic differential eq.

dX; = a( X, t)dt + b( X, t)dBy

Then for a function f(X;)

df = (af’ + %bQ fMYdt + bf'dB,
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SLE trace

e

() = 1im gy (= + VKB)
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Phases of SLE

~ k<4 4 <Kk <8 k> 8
q> §
0 0 0
simple curve double points space-filling

duality conjecture
OK; for r >4 & SLE tracefor k=16/k < 4
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Hausdorff dimensions

i ={

1
2

k/8 (k< 8)
(k > 8)

15



Basic properties

Denote measure u(vy; D,rq,7ro) for
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Property 1 (Martingale)

p(y2ly1; D,r1,7r2) = p(y2; D\ v1,7,712)
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Property 2 Conformal invariance

(@ % p)(v; D,r1,m2) = p(®(y); D', ry,13)

Y —> O (y)
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Example calculation with SLE

Schramm’s formula
Probability that + passes to the left of a given point

P(¢, ¢ ap)

For infinitesimal dt,

gg : {remainder of v} — ~/
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By prop. 1 and 2, it has same measure as SLE started
from ay = ag + /kdBy

2d
C— () =+
¢ —ag
~" lies to the left of ¢’ iff v does of ¢
. Co2dt . 2dt
P(c,c,ao)—<<P(< P 5_ao,ao+\/EdBt> ))

.

over Brownian motion dB; up to time dt
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Using ((dB;)) = 0 and ({(dB;)?)) = dt, one obtains

2 0, 2 9 mP\
(C—aoﬁg‘ | C_af08C 2 )P(C,C,ao)_O

By scale inv., P depends only on 8 = arg({ — ag)

— linear 2nd-order ordinary diff. eq. (hypergeometric)

With b.c. P(@==)=0, P(6=0)=1

_ 1, (/3 123 o
—>P_5 | Jar(1/6 )(cote) 2F1<2 3 5 cot 9)
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3. Critical Models



k = 2 loop-erased random walk
r = 8/3 self-avoiding walk*
x = 3 cluster boundary in Ising model*

x = 4 BCSOS model of roughening transition* (4-
state Potts), harmonic explorer, dual to the KT
transition in XY model*

k — 6 cluster boundary in critical percolation

x = 8 Peano curve associated with uniform spanning
tree

22
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g-states Potts model

Z

Z eXp (ﬁ Z 5Sj,8k)
{s} (J:k)

S I (14 (7 = 1)ds,.5)
{s} Gk

= ¥ (f-1)¢
graphs

q=2-+2cos(8n/k)
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4. Relation to CFT



BCFT t
C
Hilbert space of BCFT = {yr} on I %

0) = [ldur] [, _, ldvle” " Wliyp)
9) = [ldur] [, _, [d91o(@e*Wliyp)

Lalg) = [ldwf] [, _, [d0] [ 5" 1T:e(0)e St
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Insertion of a boundary condition changing operator

h) = [he) = [ dp(ve) ) x

— d / d —S[w] /
o) = [lavrl [, _,, . [avle™er)
du(~¢) is given by the path-integral in H.
|h) is independent of t.
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Measure is also determined by SLE

2dt
dgs = T vk dBy
t

This is an infinitesimal conformal mapping which cor-
responds to the insertion (1/27i) [(2dt/z—+/k dB¢)T(z).
Thus for t1 <t

9t (7¢)) = T exp (/Otl(QL_zdt’ — L_1\/EdBt/)> |v¢)
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(measure on )
= (measure on ~; \ v¢,, conditioned on ;)
X (measure on -y, )

= (measure on g, (¢)) x (measure on -y, )
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ht) =
0 /I kdB,
[ Ao, (1)) [ du(V/EByep ) Tl ZE2 - EavidBnd g, (o))

l

K
|ht) = exp <—(2L—2 — ELgl)h) |ht—tq)

However,
Thus

ht) is independent of t.

K
(2L — SL21)|h) =0

29



c=13-6(7+2)
2 K

($2.1(ap) O(C) ¢2,1(0))

PG a0) = (¢$2.1(ag) ¢2,1(c0))
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5. Remarks



A generalization

SLE(x, p) : a minimal generalization of SLE which

retains self-similarity o= 1g _2,(0%2)

no p.d
dWy = /kdBp — Y 9(.)
- 2dt
i Rl
Xt

This is a special case of

dW; = /kdB; — JF(0)dt
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(2L_p — gL%l —J 1L D=0 (J_1=JE(0))

JH x M8,

—

k = 4 case free field with piecewise constant Dirichlet
b.C.

k = 4 case Coulomb gas representation.
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Review articles

G.F.Lawler; An introduction to the stochastic Loewner evolution,
http://www.math.duke.edu/~jose/papers.html, 2001.

W.Kager, B.Nienhuis; A guide to stochastic Lowner evolution and its ap-
plications, math-ph/0312056.

J.Cardy; SLE for theoretical physicists, cond-mat/0503313.
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