Partial Breaking of $\mathcal{N} = 2$ Supersymmetry and Decoupling Limit of Nambu-Goldstone Fermion in U(N) Gauge Model

Osaka City University Kazuhito Fujiwara E-mail: fujiwara@sci.osaka-cu.ac.jp

The fermionic shift symmetry is a key point of the proof of the Dijkgraaf-Vafa conjecture which assert that non-perturbative quantities in a $\mathcal{N} = 1$ supersymmetric gauge theory can be computed by a matrix model. Thanks to this symmetry, effective superpotential is written as $W_{\text{eff}} = \int d^2 \chi \mathcal{F}_p$, for some function \mathcal{F}_p which is related to the free energy of the matrix model. The fermionic shift symmetry is due to a free fermion and is expected to come from a second, spontaneously broken supersymmetry. The U(N) gauge model which breaks $\mathcal{N} = 2$ supersymmetry to $\mathcal{N} = 1$ spontaneously was studied in [1]. The Nambu-Goldstone fermion appears in the overall U(1) part of U(N) gauge group and is coupled to the SU(N) sector because of the fact that the 3rd derivatives of the prepotential \mathcal{F} are non-vanishing.

In [2], We examine a decoupling limit of the Nambu-Goldstone fermion. How can we take such limit with partial breaking of supersymmetry $(\mathcal{N} = 2 \rightarrow 1)$ in U(N) gauge model? In order to decouple the Nambu-Goldstone fermion, we should make the prepotential \mathcal{F} be a second order polynomial. However the order of the prepotential is greater than or equal to 3 because of the condition for partial breaking of $\mathcal{N} = 2$ supersymmetry. This problem can be solved by a large limit of the parameters (e, m, ξ) of the electric and magnetic FI terms. Let us reparametrize

$$(e, m, \xi) = (\Lambda e', \Lambda m', \Lambda \xi'), \quad \mathcal{F} = \sum_{k=0}^{n} \operatorname{tr} \frac{g_k}{k!} \Phi^k = \operatorname{tr} \left(g_0 \mathbf{1} + g_1 \Phi + \frac{g_2}{2} \Phi^2 \right) + \frac{1}{\Lambda} \sum_{k=3}^{n} \operatorname{tr} \frac{g'_k}{k!} \Phi^k$$

After taking the limit $\Lambda \to \infty$, the Nambu-Goldstone fermion is decoupled from other fields, while partial breaking of $\mathcal{N} = 2$ supersymmetry is realized as before. We get a general $\mathcal{N} = 1$ action which include the free fermion. It shows that the fermionic shift symmetry is due to the free Nambu-Goldstone fermion.

References

- K. Fujiwara, H. Itoyama and M. Sakaguchi, "Supersymmetric U(N) gauge model and partial breaking of N = 2 supersymmetry," Prog. Theor. Phys. **113** (2005) 429 [arXiv:hep-th/0409060]; "Partial breaking of N = 2 supersymmetry and of gauge symmetry in the U(N) gauge model," Nucl. Phys. B **723** (2005) 33 [arXiv:hep-th/0503113]; "Partial supersymmetry breaking and N = 2 U(N(c)) gauge model with hypermultiplets in harmonic superspace," Nucl. Phys. B **740** (2006) 58 [arXiv:hep-th/0510255].
- [2] K. Fujiwara, "Partial breaking of N = 2 supersymmetry and decoupling limit of Nambu-Goldstone fermion in U(N) gauge model," arXiv:hep-th/0609039.