クォーク・グルーオン・プラズマ - 高温・高密度で実現された物質の新しい形態-

> 弦理論と場の量子論における新たな進展 2006 年9 月12 日~16 日 京都

広島大学・情報メディア教育研究センター 中村純

Linear Response Theory

・ 超高エネルギーで重い原子核同士を衝突させたら、
 温度が上がり閉じ込め/非閉じ込め相転移温度を
 おそらく超えた

- そこで作られたQCD物質は、クォークとグルーオンが自由に飛んでいるガス状のものではなかった
- ・完全流体に近いもの? くうしてそう思われるの?
- ・格子QCDで輸送係数の計算をいろいろ苦労しなが ら試みている

Confinement

Confinement (2)

Confinement Potential is "screened" at finite temperature.

Τ=0 Vm↑ T>O

Deconfinement

最近Photonで測られた温度は300 - 400MeV

Т

Observation of a Phase Transition at Finite Temperature on the Lattice

1981, McLerran and Svetitsky, Kuti, Polonyi and Szlachanyi, Engels et al.

$$Z = e^{-\beta F} = \operatorname{Tr} e^{-\beta(H-\mu N)} = \sum_{\phi} \left\langle \phi \left| e^{-\beta(H-\mu N)} \right| \phi \right\rangle$$
$$e^{-\beta \Delta F} = \frac{Z(\text{Gluons}+\text{A Static Quark})}{Z(\text{Gluons})} = \left\langle L(x) \right\rangle$$

Excess Energy when a quark exists.

 $e^{-\beta\Delta F} = \frac{Z(\text{Gluons+Static Quark+Anti-Quark})}{Z(\text{Gluons})}$ $= \left\langle L(\overset{\text{r}}{x})L^{\dagger}(\overset{\text{r}}{y}) \right\rangle$

Excess Energy when a quark and an anti-quark exist.

Heavy Quark Potential

McLerran and Svetitsky, PRD24,(1981) Lattice QCD Calculations F. Karsch, Lect. Notes Phys. 583 (2002) 209.

Heavy Quark Potential with Dynamical Quarks

Bielefeld

RHIC加速器で閉じ込め/非閉じ 込め相転移温度Tcを超えたのは ほぼ確実

Collective Flow(ガスだったら無い) y (fm) 10 5 0 -5 Ζ -10 -10 5 5 10 x (fm) -5 n Ζ $\frac{dN}{p_T dp_T dy d\varphi}$ $(p_T, \varphi; b) = \frac{dN}{2\pi p_T dp_T dy}$ $(1+2v_2(p_T;b)\cos(2\varphi)+\ldots)$

Like a Fluid?

Thermalization time <u>t=0.6 fm/c</u> and <u> ϵ =20 GeV/fm³</u> Required QGP Type EoS in Hydro model

 p_T/n (GeV/c)

Jet Quenching

Partonと非常に強く相互作用する物質が作られている?

Figure stolen from Chujo's talk

Deconfinement (Disappearing of the confinement potential)

No Bound State

- QED is a Deconfinement theory, but there are Positroniums.
- Mass and Width may change.

Progress of Lattice Technology (2) - Hadrons at finite Temperature -

QCD-Taro Collaboration, Phys.Rev. D63 (2001) 054501, hep-lat/0008005

Spectral Functions at finite T

- Asakawa-Hatsuda
 - Phys.Rev.Lett. 92 (2004) 012001
- Umeda et al.
 - Nucl.Phys. A721 (2003) 922
- Datta et al.

- Phys.Rev. D69 (2004) 094507

Umeda et al.

Progress of Lattice Technology (3)- QCD Simulations at Finite Density -

Transport Coefficients

A. Nakamura S.Sakai

- A Step towards Gluon Dynamical Behavior.
- They can be (in principle) calculated by a well established formula (Linear Response Theory).
- They are important to understand QGP which is realized in RHIC (and CERN-SPS) and LHC.

RHIC-data \square Big Surprise !

Hydro-dynamical Model describes RHIC data well !

At SPS, the Hydro describes well one-particle distributions,

HBT etc., but fails for the elliptic flow.

Hydro describes well v2

Hydrodynamical calculations are based on Ideal Fluid, i.e., zero shear viscosity.

Or not so surprise ...

- E. Fermi, Prog. Theor. Phys. 5 (1950) 570
 Statistical Model
- S.Z.Belen'skji and L.D.Landau, Nuovo.Cimento Suppl. 3 (1956) 15

 Criticism of Fermi Model
 "Owing to high density of the particles and to strong interaction between them, one cannot really speak of their number."

Hagedorn, Suppl. Nuovo Cim. 3 (1956) 147. Limiting Temperature

Teaney, Phys.Rev. C68 (2003) 034913 (nucl-th/0301099)

 $\tau = \sqrt{t^2 - z^2}$: Time scale of the expansion

D. Molnar and M. Gyulassy, Nucl. Phys. A697 (2002) 495. (Erratum ibid. A703 (2002) 893);

"15 times above the perturbative estimate" (Molnar Quark Matter 2005)

Another Big Surprise !

- The Hydrodynamical model assumes zero viscosity, i.e., Perfect Fluid.
- Phenomenological Analyses suggest also small viscosity.

Liquid or Gas ?

Literature (1) - 流体模型

- ランダウ・リフシッツ理論物理学教程
 - 流体力学(2) 絶版!
 - 第15章:相対論的流体力学
- J. D. Bjorken
 - Phys. Rev. D 27, 140–151 (1983)
 - Highly relativistic nucleus-nucleus collisions: The central rapidity region

Literature (1) - 流体模型(続き)

- Iso, Mori and Namiki, Prog. Theor. Phys. 22 (1959) pp.403-429
 - The first paper to analyze the Hydrodyanamical Model from Field Theory.
 - Applicability Conditions were derived:
 - Correlation Length << System Size
 - Relaxation time << Macroscopic Characteristic Time
 - Transport Coefficients must be small

Literature (2) - 輸送係数(摂動)

- G. Baym, H. Monien, C. J. Pethick and D. G. Ravenhall,
 - Phys. Rev. Lett. 16 (1990) 1867.
- P. Arnold, G. D. Moore and L. G. Yaffe
 JHEP 0011 (2000) 001, (hep-ph/0010177).
 Leading-log results"
- P. Arnold, G. D. Moore and L. G. Yaffe
 JHEP 0305 (2003) 051, (hep-ph/0302165).

- Beyond leading log"

Literature (3) - 輸送係数

- Hosoya, Sakagami and Takao, Ann. Phys. 154 (1984) 228.
 - Transport Coefficients Formulation
- Hosoya and Kayantie, Nucl. Phys. B250 (1985) 666.
- Horsley and Shoenmaker, Phys. Rev. Lett. 57 (1986) 2894; Nucl. Phys. B280 (1987) 716.
- Karsch and Wyld, Phys. Rev. D35 (1987) 2518.
 The first Lattice QCD Calculation
- Aarts and Martinez-Resco, JHEP0204 (2002)053

- Criticism against the Spectrum Function Ansatz.

- Petreczky and Teaney, hep-ph/0507318
 - Impossible to determine Heavy Quark Transport coefficient

Literature (4) – 輸送係数(格子QCD)

- Masuda, A.N., Sakai and Shoji Nucl.Phys. B(Proc.Suppl.)42, (1995),526
- A.N., Sakai and Amemiya Nucl.Phys. B(Proc.Suppl.)53, (1997), 432
- A.N, Saito and Sakai Nucl.Phys. B(Proc.Suppl.)63, (1998), 424
- Sakai, A.N. and Saito Nucl.Phys. A638, (1998), 535c
- A.N, Sakai Phys.Rev.Lett. 94 (2005) 072305 hep-lat/0406009

Lietature(5) - Linear Response Theory

✓ Zubarev

"Non-Equilibrium Statistical Thermo-dynamics"

- ✓ Kubo, Toda and Saito
 - Statistical Mechanics (Springer-Verlag, 1983)
 - 岩波講座 現代物理学の基礎 (第2版) 第5巻 統計物理学
- ✓ 木村他「中野藤生先生インタビュー ~線形応答理論から 半世紀を経て~」
 - 物性研究 2005年 5月号 1000円
- ✓ 中嶋貞雄 線形応答理論の成立
 - 日本物理学会誌 第51巻10号
 - http://wwwsoc.nii.ac.jp/jps/jps/butsuri/50th/noframe/50(10)/50thp699.html

(中村純「物理とテンソル」(共立出版) は別に参考にはなりません。 買ってくれてもいいけど)

ランダウの相対論的流体モデル

$$\partial_{\mu}T^{\mu\nu} = 0$$
$$T^{\mu\nu} = (\varepsilon + P)u^{\mu}u^{\nu} - Pg^{\mu\nu}$$
$$\partial_{\mu}j_{i}^{\mu} = 0 \qquad i : \text{Baryon Number, Entropy}$$
$$(+ 状態方程式)$$

$$T^{\mu\nu} \Longrightarrow T^{\mu\nu} + 2\eta X^{\mu\nu} + \cdots$$
$$X_{\mu\nu} \equiv \frac{1}{2} \left(\Delta_{\mu\rho} \Delta_{\nu\sigma} + \Delta_{\mu\sigma} \Delta_{\nu\rho} - \frac{2}{3} \Delta_{\mu\nu} \Delta_{\rho\sigma} \right) \nabla^{\rho} u^{\sigma} \qquad \Delta_{\mu\nu} \equiv g_{\mu\nu} - u_{\mu} u_{\nu}$$
$$\nabla^{\mu} \equiv \Delta^{\mu\nu} \frac{\partial}{\partial \sigma^{\nu}}$$

Tsumura, Kunihiro and Ohnishi hep-ph/0609056

$\rho: e^{-A+B}$: non-equilibrium statistical operator

$$A = \int d^{3}x \beta(x,t) u^{\nu} T_{0\nu}(x,t)$$

$$B = \int d^{3}x \int_{-\infty}^{t} dt_{1} e^{\varepsilon(t_{1}-t)} T_{\mu\nu}(x,t) \partial^{\mu}(\beta(x,t)u^{\nu})$$

Using: $e^{-A+B} = e^{-A} + \int_{0}^{1} d\tau e^{A\tau} B e^{-A\tau} e^{-A} + \cdots$
 $\rho \approx \rho_{eq} + \int_{0}^{1} d\tau (e^{A\tau} B e^{-A\tau} e^{-A} - \langle B \rangle_{eq}) \rho_{eq}$
 $\rho_{eq} \equiv e^{-A} / \operatorname{Tr} e^{-A} \to \exp(-\beta H) / \operatorname{Tr} e^{-A}$
in the co-moving frame, $u^{\mu} = (1 \quad 0 \quad 0$

$$\begin{split} \left\langle T_{\mu\nu} \right\rangle &= \left\langle T_{\mu\nu} \right\rangle_{eq} + \\ &+ \int d^3 x' \int_{-\infty}^t dt' e^{\varepsilon(t'-t)} \left(T_{\mu\nu}(x,t), T_{\rho\sigma}(x',t') \right)_{eq} \partial^\rho \left(\beta u^\sigma \right) \\ &\text{where } \left(T_{\mu\nu}(x,t), T_{\rho\sigma}(x',t') \right)_{eq} \\ &= \int_0^1 d\tau \left\langle T_{\mu\nu}(x,t) \left(e^{-A\tau} T_{\rho\sigma}(x',t') e^{A\tau} - \left\langle T_{\rho\sigma}(x',t') \right\rangle_{eq} \right) \right\rangle_{eq} \end{split}$$

$$\left\langle T^{ij} \right\rangle = \eta \left(\partial^{i} u^{j} + \partial^{j} u^{i} \right) / 2$$

$$\left\langle T^{0i} \right\rangle = -\chi \left(\beta^{-1}(x,t) \partial^{i} \beta + \partial_{\alpha} u^{\alpha} \right)$$

$$\left\langle p \right\rangle - \left\langle p \right\rangle_{eq} = -\varsigma \partial_{\alpha} u^{\alpha} \qquad p \equiv -\frac{1}{3} T^{i}_{i}$$

One can show

$$(T_{\mu\nu}(x,t),T_{\rho\sigma}(x',t'))_{eq} = -\beta^{-1} \int_{-\infty}^{t'} dt \, " \left\langle T_{\mu\nu}(x,t),T_{\rho\sigma}(x',t'') \right\rangle_{ret}$$

Transport Coefficients are expressed by Quantities at Equilibrium

$$\eta = -\int d^{3}x' \int_{-\infty}^{t} dt_{1} e^{\varepsilon(t_{1}-t)} \int_{-\infty}^{t_{1}} dt' < T_{12}(\overset{\Gamma}{x},t)T_{12}(\overset{\Gamma}{x}',t') >_{ret}$$

$$\frac{4}{3}\eta + \varsigma = -\int d^{3}x' \int_{-\infty}^{t} dt_{1} e^{\varepsilon(t_{1}-t)} \int_{-\infty}^{t_{1}} dt' < T_{11}(\overset{\Gamma}{x},t)T_{11}(\overset{\Gamma}{x}',t') >$$

$$\chi = -\frac{1}{T} \int d^{3}x' \int_{-\infty}^{t} dt_{1} e^{\varepsilon(t_{1}-t)} \int_{-\infty}^{t_{1}} dt' < T_{01}(\overset{\Gamma}{x},t)T_{01}(\overset{\Gamma}{x}',t') >_{ret}$$

$$\eta : \text{Shear Viscosity} \qquad \mathcal{G} : \text{Bulk Viscosity}$$

$$\chi : \text{Heat Conductivity} \implies \text{we do not consider in} \\ \text{Quench simulations.}$$

$$\frac{T_{\mu\nu}(\overset{\Gamma}{x}',t') \qquad T_{\mu\nu}(\overset{\Gamma}{x},t)}{t_{1}} e^{\varepsilon(t_{1}-t)} t$$

Energy Momentum Tensors

$$T_{\mu\nu} = 2Tr(F_{\mu\sigma}F_{\nu\sigma} - \frac{1}{4}\delta_{\mu\nu}F_{\rho\sigma}F_{\rho\sigma})$$

$$(T_{\mu\mu} = 0)$$

$$U_{\mu\nu}(x) = \exp(ia^{2}gF_{\mu\nu}(x))$$

$$F_{\mu\nu} = \log U_{\mu\nu} / ia^{2}g$$
or
$$F_{\mu\nu} = (U_{\mu\nu} - U_{\mu\nu}^{\dagger})/2ia^{2}g$$

Real Time Green function vs. *Temperature* Green function

Hashimoto, A.N. and Stamatescu, Nucl.Phys.B400(1993)267 $<<\frac{1}{i}[\phi(t,\overset{\Gamma}{x}),\phi(t',\overset{\Gamma}{x}')]>>\equiv\frac{1}{Z}\mathrm{Tr}(\frac{1}{i}[\phi(t,\overset{\Gamma}{x}),\phi(t',\overset{\Gamma}{x}')]e^{-\beta H})$ $=F\int_{-\infty}^{\infty}\frac{d\omega}{2\pi}e^{-i\omega(t-t')}\Lambda(\omega, p)$ $\phi(t, \dot{x}) = e^{itH}\phi(0, \dot{x})e^{-itH}$ $G_{\beta}^{ret/adv}(t, \dot{x}; t', \dot{x}') = \pm \theta(t - t'/t' - t) << \dots >>$ $=F\int_{-\infty}^{\infty}\frac{d\omega}{2-e}e^{-i\omega(t-t')}K_{\beta}^{ret/adv}(\omega, p)$ $K_{\beta}^{ret/adv}(\omega, \overset{r}{p}) = \int_{-\infty}^{\infty} \frac{d\omega'}{2\pi} \frac{\Lambda(\omega')}{\omega - \omega' + \varepsilon}$

Temperature Green function

$$\begin{split} G_{\beta}(\tau, \overset{1}{x}; \tau', \overset{1}{x}') = &< T_{\tau}\phi(\tau, \overset{1}{x})\phi(\tau', \overset{1}{x}') >> \\ \phi(t, \overset{1}{x}) = e^{\tau H}\phi(0, \overset{1}{x})e^{-\tau H} \\ G_{\beta}(\tau, \overset{1}{x}; 0, 0) = G_{\beta}(\tau + \beta, \overset{1}{x}; 0, 0) \\ \hat{K}_{\beta}(\xi_{n}, \overset{\Gamma}{p}) = F^{-1} \int_{0}^{\beta} d\tau e^{-i\xi_{n}(\tau - \tau')} G_{\beta}(\tau, \overset{\Gamma}{x}; \tau', \overset{\Gamma}{x}') \\ \xi_{n} = \frac{2\pi}{\beta}n, n = 0, \pm 1, \pm 2, ,, \end{split}$$

Matsubara-frequencies

Abrikosov-Gorkov-Dzyalosinski-Fradkin Theorem

$$\hat{K}_{\beta}(\xi_n) = \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} \frac{\Lambda(\omega)}{\omega - i\xi_n} = iK_{\beta}(i\xi_n)$$

Transport Coefficients of QGP

We measure Correlations of Energy-Momentum tensors

 $< T_{\mu\nu}(0)T_{\mu\nu}(\tau) >$

Convert them (Matsubara Green Functions) to Retarded ones (real time).

Transport Coefficients (Shear Viscosity, Bulk Viscosity and Heat Conductivity)

Ansatz for the Spectral Functions

We measure Matsubara Green Function on Lattice (in coordinate space).

$$< T_{\mu\nu}(t, \overset{\Gamma}{x})T_{\mu\nu}(0) >= G_{\beta}(t, \overset{\Gamma}{x}) = F.T.G_{\beta}(\omega_{n}, \overset{\Gamma}{p})$$
$$G_{\beta}(\overset{\Gamma}{p}, i\omega_{n}) = \int d\omega \frac{\rho(\overset{\Gamma}{p}, \omega)}{i\omega_{n} - \omega}$$

We assume (Karsch-Wyld)

$$\rho = \frac{A}{\pi} \left(\frac{\gamma}{\left(m - \omega\right)^2 + \gamma^2} + \frac{\gamma}{\left(m + \omega\right)^2 + \gamma^2} \right)$$

and determine three parameters, A, m, γ. We need large Nt !

Some Special Features of Lattice QCD at Finite Temperature

High Temperature $\implies N_t a_t$: small

Nt=8

Results: Shear and Bulk Viscosities

Comparison with Pertubative Calculations

Good for T/Tc>5

$\frac{\eta}{s}$ can have the lower limit ?

- Counter Example by Prof. Baym
 - We heat up Billiard Balls which have inter-structure. Then Entropy increases. If the surface of the balls does not change, the Viscosity should be the same.

$$\frac{\eta}{s} \to 0$$

• We may give Counter-Argument ?

Fighting against Noise

Fluctuations in MC sweeps

Correlators

Figure 3. Fit of $G_{11}(T)$ by the parameters of spectral function for SU(2) at $\beta = 3.0$

U(1) Coulomb and Confinement Phases SU(2) Two Definitions: F=log U F=U-1

SU(3) Improved Action

Errors in U(1), SU(2), SU(3) standard and SU(3) improved

1995 U(1)

1997 SU(2)

1998 SU(3) preliminary

Low Frequency Region in Spectral Function $\rho(\omega)$ is Important

$$\eta = \pi \lim_{\omega \to 0} \frac{\rho(\omega)}{\omega}$$
 Horsley
($\epsilon \longrightarrow 0$) after

lorsley and Shoenmaker

 $\rightarrow 0$) after the Thermo-Dynamics Limit

Long Range in τ of Thermal Green Function $\langle T_{\mu\nu}(0)T_{\mu\nu}(\tau) \rangle$ on the Lattice should be precisely determined.

The finite volume scaling will be required.

Aarts and Martinez-Resco, JHEP0204 (2002)053 Criticism against the Spectrum Function Ansatz. Petreczky and Teaney, hep-ph/0507318 Impossible to determine Heavy Quark Transport coefficient

Note that Non-Equilibrium Calculations are in general subtle.

- Important Regions :
 w: 0

 Physics is in Infra-Red
 i.e., Themodynamical
 Limit
- But this is Challenge of Lattice Simulation !

Summary

- We have calculated Transport Coefficients on Nt=8 Lattice. The limitations are
 - Quench Approximation
 - In order to convert Matsubara Green Function to Retarded one, we use Ansatz for Spectral Function with fitting parameters:

$$\rho = \frac{A}{\pi} \left(\frac{\gamma}{\left(m - \omega\right)^2 + \gamma^2} + \frac{\gamma}{\left(m + \omega\right)^2 + \gamma^2} \right)$$

- Shear Viscosity Positive η/s : 0.1
- Bulk Viscosity ~ 0
- Improved Action helps us a lot to get good Signal/Noise ratio.

Future direction ?

- If we can extract the Spectral Density $\rho(\omega)$ we can get the Transport Coefficients.
 - Maximum Entropy Method by Asakawa, Nakahara and Hatsuda
- We need (probably)
 - Anisotropic Lattice
 - Finite size scaling analysis
- Full QCD ?

or

with Quark Sector even in quench?

We need data at large τ (small ω) with $O\left(\frac{1}{10}\right)$ Errors

- Brute Force ?
 - Not so crazy because the next Super-Computer is Peta-Flops Order.
- Good Operator
 - Extended
 - Renormalized

・ 超高エネルギーで重い原子核同士を衝突させたら、
 温度が上がり閉じ込め/非閉じ込め相転移温度を
 おそらく超えた
 実験の概要

- そこで作られたQCD物質は、クォークとグルーオンが自由に飛んでいるガス状のものではなかった
- ・完全流体に近いもの?
- ・格子QCDで輸送係数の計算をいろいろ苦労しなが ら試みている

イメージはつかめたでしょ

うか?

We are the poorest group among Lattice Society But Interesting QGP Physics motivates us go further as possible as we can !

Anyone is welcome to join !

Backup Slides

頼まれてもいないのにコマーシャル

Quark–Gluon Plasma

KOHSUKE YAGI, TETSUO HATSUDA, AND YASUO MIAKE

CAMBRIDGE MONOGRAPHS ON PARTICLE PHYSICS, NUCLEAR PHYSICS AND COSMOLOGY

- 1. What is the quark-gluon plasma? Part I Basic Concept of Quark-Gluon Plasma
- 2. Introduction to QCD
- 3. Physics of the quark-hadron phase transition
- 4. Field theory at finite temperature
- 5. Lattice gauge approach to QCD phase transition

Part II Quark-Gluon Plasma in Astrophysics

Part III Quark-Gluon Plasma in Relativistic Heavy Ion ollisions

Onarts Glaza Physica

Comparison of Lattice with Resonance Gas Model

Karsch, Redlich and Tawfik

Phys.Lett. B571 (2003) 67 Masses in the model are modified to fit Lattice data.

Figure 16: Screening fits to the $Q\bar{Q}$ free energy F(r,T) for $T \ge T_c$ (left) and $T \le T_c$ (right) [28]

T-dependence of binding energy for J/Psi. H.Satz, hep-ph/0512217

Very high Temperature

Entropy Density

We reconstruct *p* from Raw-Data by CP-PACS (Okamoto et al., Phys.Rev.D (1999) 094510)
Spectral Function by Aarts and Resco $\rho(\omega) = \rho^{\log \omega}(\omega) + \rho^{high}(\omega)$

Fitting with three parameters, $b_1 c_1 m$ $c_1 < 0$?

Effect of High-Frequency part

$$\rho = \rho^{BW} + \rho^{high}$$

$$\frac{\rho^{\text{low}}(\omega)}{T^4} = x \frac{b_1 + b_2 x^2 + \dots}{1 + c_1 x^2 + c_2 x^4 + \dots} \qquad x \equiv \frac{\omega}{T}$$
$$\rho^{BW} = \frac{A}{\pi} \left(\frac{\gamma}{(m-\omega)^2 + \gamma^2} + \frac{\gamma}{(m+\omega)^2 + \gamma^2} \right)$$

 ηa^3 m_{th} 0.00225(201) ∞ 0.00223(191) 5.0 0.00194(194) 3.0

β**=**3.3

0.00126(204) 2.0

 ρ^{high} contribution is larger than ρ^{BW} at t=1.

 $m_{th} = 1.8$

Why they are so noisy ?

- RG improved action helps lot.
 - Noise from Lattice Artifact ?
 (Finite *a* correction ?)

А

 Once we checked that there is not so much difference between

$$F_{\mu\nu} = \left(U_{\mu\nu} - U_{\mu\nu}^{\dagger}\right)/2i$$
 and $F_{\mu\nu} = \log U_{\mu\nu}/i$ for SU(2). But we should check it again.

- The situation reminds us Glue-Ball Case. (I thank Ph.deForcrand for discussions on this point.)
- Glue-Ball Correlators = $\left\langle \Box(\tau) \Box(0) \right\rangle$
- Large (extended) Operators work better,

• Mmmm... not works ...

Another Extended $F\mu\nu$

A Crazy method Source method + Langevin (Parisi)

$$Z(J) = \int D\phi e^{-S + J\phi}$$

Source Method

$$\langle \phi(x)\phi(y) \rangle = \frac{\delta}{\delta J(x)} \frac{\delta}{\delta J(y)} \log Z(J)$$

Langevin Update

$$\frac{d\phi(x)}{dt} = -\frac{\partial S}{\partial\phi(x)} + \eta$$

Deterministic No Accept-Reject step *t* : Langevin time,

 η : Gaussian Random Numbers

 $\left\langle \phi(x)\phi(y)\right\rangle = \frac{\delta}{\delta J(x)} \left\langle \phi(y)\right\rangle_{J} = \frac{\left\langle \phi(y)\right\rangle_{\varepsilon J} - \left\langle \phi(y)\right\rangle_{0}}{\varepsilon}$

 $\begin{array}{c} \left\langle \phi(y) \right\rangle_{\varepsilon J} \\ \left\langle \phi(y) \right\rangle_{0} \end{array}$

Calculate by Langevin by the same Random Numbers

Namiki et al., Prog.Theor.Phys. 76 (1986) 501 O(3) Non-linear σ -model

In our case, ... (Very very preliminary)

Anisotropic Lattice ?

 Anisotropic lattice has matured and will help us to get more data points to determine the spectral function.

