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1. Topological Order

2. Quark deconfinement Topological order
or confinement — or not

3. New criterion for quark confinement

v a—AH )

g3 T3
re
. -|-3\ )_
Imo]o-- ( —pH ) =1 *
poxTr(e
2




Plan of this talk

1. What is topological order ?
2. Topological discrete algebra in QCD
3. Topological degeneracy in QCD
4. Test of our criterion
e Wilson’s criterion
 1-loop analysis

o Witten index
 Fradkin-Shenker’s phase diagram



(D What's topological order ?

Topological orders = orders which can not be described
by any local order parameter

X X

How to detect the topological order ?



ldea [ Order = Ground state degeneracy ]

For symmetry breaking order ...
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Topological orders

Topological orders = ground-state degeneracy depending
on the topology of the space

(Topological degeneracy)
Wen ‘90

For ground state degeneracy,
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cf.) symmetry breaking orders

ooy 80l ooy 00l

€ For SSB, the degeneracy is independent of the topology,

€ For topological orders, the degeneracy depends on the

topology

ex.) Laughlin state v = % Wen-Niu ‘90

degeneracy @ #



What's the origin of the topological degeneracy ?

For symmetry breaking order

100 = 1l

[ The degeneracy is due to the broken generators ]

For topological orders,

—> _topological discrete algeb@
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Topological discrete algebra Y Monmoto. -5 Wu 05

€ Hidden algebra in topological orders
€ Possible only for the space with non-trivial topology

€ Origin of the topological degeneracy

Flux insertion Winding of Exc_hange of
o excitation excitations
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(@ Topological discrete algebra in QCD

QCDonT3xR
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For QCD, 73 = g1 ® gl ® gl

Define flux insertion op. U, (a =1,2,3)

" Adiabatic electromagnetic flux insertion h

> | by ®,=27/3%

. (e : charge of quark))

(I)(l
Ca

@

cf.) for abelian case, &g = 27 /e

Note that the theory Is the same after the flux insertion U,
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After flux insertion, e: charge of quark

/

lZn’YaUn,albn-Fa — IZn’YaeiecDa/NaUn,awn-ka

\ Ny 1

Since the electromagnetic filed is zero on the torus, we can
eliminate the induced gauge filed except on the link between
N,and 1
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When ©_ =27 /3e...

The remaining phase e*¢®a can be removed by
the transformation on Uy q

e"27/3Up o € SU(3)

> Z(dg) = Z(0)

\ _/

\_@insertion by 27z/3eD N




We have different Aharanov-Bohm phases between

guark deconfinement phase and confinement one
D,

Ca

& If the excitation is quark, we have 7o @

| — ,—2m/3 l |

translation after flux insertion

i

& If the excitation is hadron, we have

ToUq = Uqtf No AB phase
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Other commutation relations are determined by ..

(@ Permutation group
(opopg1)’ =1, 1<k<N-1
Op0O] — O[]0, 1§k§N_37 |l_k|227
T4 =00, 1<i<N-—-1, a=1,23,
T%O'j:aija 2<j<N, a=123,
’7"0"7'1'): qu, Z)]: 7"'N7 a’ab:172’3'

@ Shur’s lemma

« Forquark, ——> U UU;'U; ! =e™ab U2 = const.

* For hadron, — U, = const.
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Because the excitations (quarks or hadrons) are boson or
fermion, o, = +1.

The unique solution of the permutation group
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We have two different topological discrete algebras

For quark deconfinement phase
T,: quark winding operator

( | )
Tan — e—(27TZ/3)5a’bUbTa Uan — 827T’L)\a7bUbUa

T.Ty, = TpTy U3 = const.
. Y,

U

For quark confinement phase
T,: hadron winding operator

Taly = 1Tylq U, = const.

S

trivial !



@ Topological degeneracy in QCD

If quarks are deconfined, the physical states are classified

with the permutation group of quarks.
~_
Non trivial topological discrete algebra
4 | | N
Tan — e—(27TZ/3)5a’bUbTa Uan — 627T’L>\a7bUbUa
3 _—
TaTb — TbTa Ua — const.
\ _/

@Iogical ground state degener@
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On the other hand, ...

If quarks are confined, the physical states are classified with
the permutation group of hadrons.

Topological discrete algebra is trivial

@opological degener@
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4 )
The confinement and deconfinement phases in QCD

are discriminated by the topological ground state

degeneracy !
\ J

For SU(N) QCD on T" X R4

e deconfinement:  N"—fold ground state degeneracy

e confinement: No topological degeneracy
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Criterion for confinement

r ( H ) )
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No topological degeneracy
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@ Test of our criterion

We check this in the following manners

® comparison with the Wilson’s criterion

® perturbative calculation of the topological ground
state degeneracy

® comparison with Witten index

® consistency check with Fradkin-Shenker’s phase
diagram
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1. comparison with Wilson’s criterion

[ OCD ] [SU(S)YM]

heavy quark limit

The pure SU(3) YM has an additional symmetry known as
center symmetry

center symmetry

W(Cs) — BaW(Cq)BI
> I’C — €i27r/3W(Ca)

Ba Ua — 6227‘-/3(]@ 23



confinement phase

: <
@ area law T + I T

(W(Ca, )WT(Ca, ")) ~ e—0oL(T—1")

temporal gauge

@ cluster property

(W (Cay YW (Cay 7)) 757 (W (Ca)) 2
—> (W(Cq)) =0

The center symmetry is not broken

> No ground state degeneracy



deconfinement phase

@ perimeter law T < +

(W (Ca, )WT(Cq, 7))y ~ =™ >

> (W(Cy)#0

@g of the center symmetry > ——> 33degeneracy

The degeneracy reproduces the one obtained from the
topological discrete algebra
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In the static limit, our criterion for confinement coincides with
the Wilson'’s.

remark

In this limit, topological discrete algebra becomes as
follows.

—

To — W(Cy)
Us — Bg

UaTa — €i27r/3TaUa, — BaW(Ca) — 6227T/3W(Ca)Ba
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2. perturbative calculation of topological degeneracy

® \We can calculate the topological degeneracy in the

perturbation theory.
® Since the QCD is deconfined in the weak coupling,

there must be the topological degeneracy.

SU(2) gauge theory on a S'x R12

Sl
(),
2-fold degeneracy
should arises.
27
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The Result
i0
W(C) = Pexp (ig /C<Au(w)>d$) = ( eo 63’9 )

N.Weiss 81,

V(0) = K{—h(29)+Nf[h(0+¢/2)_h(9_¢/2)]} Hosotani 83

NZ

wilzan avi

Again, the result is consistent with the topological degeneracy

~ N
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4. N=1 SU(N) SYM

® \Witten index has information on the ground state
degeneracy on the torus T3

® N=1 SU(N) SYM is in confinement phase, so there
must be no topological degeneracy.

\

We know that there exists degeneracy on T3

j1> Witten index Tr(-=1)'=N

at least N-degeneracy
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But ...

/ ®The theory has a discrete chiral symmetry, which is\
expected to be spontaneously broken.

W — elT/2Ny

® The rotation symmetry is expected not to broken.

v — -

\- /

|:> N-fold degeneracy is a consequence of SSB
of chiral symmetry

No topological degeneracy = quark confinement
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3. comparison with Fradkin-Shenker’s phase diagram

Fradkin-Shenker’s result (79)

.

® Higgs and the confinement phase are smoothly connected when
the Higgs fields transform like fundamental rep (complementarity).

® They are separated by a phase boundary when the Higgs fields
\transform like other than fundamental rep.

.

1l

Our topological argument implies that no ground state degeneracy

\

~\

exists when Higgs and the confinement phase are smoothly connected.

J
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Z,gauge theory (Zo € SU(2))

L

Wilson loop

N

qus

\\\\

Charge

2> GAUGE THEORY

FIG, 1. The phase diagram for the Z, model (d= 3).
The shaded region iz where the bounds for analyticity
hold. The full curves represent lines of second-order
transitions given by (2.18). The broken lines are their
extrapolation into the diagram. Notice that the amalytic-
ity region has a finite width at both the Higgs region
{K==) and confinement {f=0). Also note the curvature
of the phase transition lines. The phases are described
in the text.
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Topological degeneracy

Conh nament Free
\%ﬁ. Charge
Q

o]

-"--*

ISING MODEL

o)

Z, GAUGE THEORY "

FIG. 1. The phase diagram for the Z; model (d = 3).
The shaded region is where the bounds for analyticity
hold. The full curves represent lines of second-order
transitions given by (2.18). The broken lines are their
extrapolation into the diagram. Notice that the analytic-
ity region has a finite width at both the Higgs region
(K =) and confinement {f=0). Also note the curvature
of the phase transition lines. The phases are described
in the text,



Abelian Higgs model

s[¢ﬁ~);u,,ﬁ-}]=% L Te{U, B0, +2,)0 4 200 )+ hue +2 Z [06) D{U, @} o1 (F+2,)+c.c]

{r',,pu} (ryp)

1) Higgs charge =1 2) Higgs charge =2
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\C N ement Coulomb ] Confinement Coulomb =
o\g ® .
Q
0 S— o
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ABELIAN GAUGE THEORY
ABELIAN GAUGE THEORY

FIG. 3. Phase diagram of the Abelian Higgs model
for Higgs fields with two units of charge, The differ-
FIG. 2. Phase diagram for the Abelian model with ence with Fig. 2 is that there is a phase with confine-
Higgs fields in the fundamental representation (d=4). ment (in the Wilson sense) of static sources in the fun-
The broken line emerging from the X¥ transition (K damental representation.
=) ig a line of first-order transitions. The full line
that emerges from the pure gauge transition (f=0) is a
line of transitions of the same order as the pure gauge
eritical point. Notice the eurvature of the lines. The
phases are described in the text.

<= perimeter law
< arealaw 3



r

.

Our topological argument works when the Higgs field has the two unit of
charge.

~\

s[:ﬁﬁ);upfﬂ]:% 2 Te[U, @)U,(F+2,)UL F+8,)U5 @)+ h.c.] i) [o@) DU, @} 0T F+e,)+c.cl],

* N

{T,p[u} (ryp)

charge 2

center symmetry

Up(7) = =Uu(7)

35



Topological degeneracy

Z, GAUGE THEO

-
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hY

Higgs
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‘Confinemant Coulomt A \
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ABELIAN GAUGE THEORY . o
ABELIAN GAUGE THEORY

FIG, 2, Phase diagram for the Abelian model with FIG, 3. Phase diagram of the Abelian Hi,
Higgs fields in the fundamental representation (d=4). for Higgs fields with two units of charge,
The broken line emerging from the X¥ transition (K ence with Fig. 2 is that there is a phase wi
=) {g a line of first~order transitions, The full line ment (in the Wilson sense) of static sources
that emerges from the pure gauge trangition (8=0) ig a damental representation.

line of transitions of the same order as the pure gauge
eritical point, Notice the curvature of the lines, The
phases are described in the text.
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€ Summary

€ New concept of order dubbed as topological order is
Introduced.

€ Topological order is characterized by topological degeneracy.
€ Topological degeneracy gives a gauge-invariant “order
parameter” which distinguishes the quark confinement phase
and deconfinement one.

€ Topological criterion of the quark confinement is available
even in the presence of the dynamical quarks.

€ Our topological discrete algebra can be generalized into
other systems, (i.e. standard model, SUSY )
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