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It will be very exciting if non-perturbative questions in
SUSY gauge theories can be studied numerically at one’s
will !

• spontaneous SUSY breaking

• string/gauge correspondence

• test of various “solutions” (e.g., Seiberg-Witten)

SUSY vs lattice !

{Q,Q†} ∼ P

SUSY restores only in the continuum limit !
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Present status:

• For 4d N = 1 SYM (gaugino condensation, degenerate
vacua, Veneziano-Yankielowicz effective action, etc.), nu-
merically promising formulation exists

• Even in this “simplest realistic” model, no conclusive
evidence of SUSY has been observed

• Investigation of low-dimensional SUSY gauge theories
(simpler UV structure) would thus be useful to test var-
ious ideas

• Kaplan et. al., Sugino, Catterall, Sapporo group. . .

• SUSY QM (16 SUSY charges!) ⇐ Takeuchi-kun
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In this work, we carry out a (very preliminary) Monte Carlo

study of Sugino’s lattice formulation of 2d N = (2,2) SYM

(4 SUSY charges)

F. Sugino, JHEP 03 (2004) 067 [hep-lat/0401017]
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Two-dimensional square lattice (size L)

Λ =
{
x ∈ aZ2 | 0 ≤ xµ < L

}
The lattice action

S = Qa2
∑
x∈Λ

(
O1(x) +O2(x) +O3(x) +

1

a4g2
tr {χ(x)H(x)}

)
,

where

O1(x) =
1

a4g2
tr
{
1

4
η(x)[φ(x), φ(x)]

}
O2(x) =

1

a4g2
tr
{
−iχ(x)Φ̂TL(x)

}
O3(x) =

1

a4g2
tr

i
1∑

µ=0

ψµ(x)
(
φ(x)− U(x, µ)φ(x+ aµ̂)U(x, µ)−1

)
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A lattice counterpart of the BRST-like transformation Q

QU(x, µ) = iψµ(x)U(x, µ)

Qψµ(x) = iψµ(x)ψµ(x)− i
(
φ(x)− U(x, µ)φ(x+ aµ̂)U(x, µ)−1

)
Qφ(x) = 0

Qχ(x) = H(x) QH(x) = [φ(x), χ(x)]

Qφ(x) = η(x) Qη(x) = [φ(x), φ(x)]

Q2 = 0 on gauge invariant quantities

From this nilpotency, the lattice action is manifestly invari-

ant under one of four super-transformations, Q.
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More explicitly

S = a2
∑
x∈Λ

 3∑
i=1

LBi(x) +
6∑
i=1

LFi(x) +
1

a4g2
tr
{
H(x)−

1

2
iΦ̂TL(x)

}2


where

LB1(x) =
1

a4g2
tr
{
1

4
[φ(x), φ(x)]2

}
LB2(x) =

1

a4g2
tr
{
1

4
Φ̂TL(x)2

}

LB3(x) =
1

a4g2
tr


1∑

µ=0

(
φ(x)− U(x, µ)φ(x+ aµ̂)U(x, µ)−1

)

×
(
φ(x)− U(x, µ)φ(x+ aµ̂)U(x, µ)−1

)
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and

LF1(x) =
1

a4g2
tr
{
−

1

4
η(x)[φ(x), η(x)]

}
LF2(x) =

1

a4g2
tr {−χ(x)[φ(x), χ(x)]}

LF3(x) =
1

a4g2
tr
{
−ψ0(x)ψ0(x)

(
φ(x) + U(x,0)φ(x+ a0̂)U(x,0)−1

)}
LF4(x) =

1

a4g2
tr
{
−ψ1(x)ψ1(x)

(
φ(x) + U(x,1)φ(x+ a1̂)U(x,1)−1

)}
LF5(x) =

1

a4g2
tr
{
iχ(x)QΦ̂(x)

}
LF6(x) =

1

a4g2
tr

−i
1∑

µ=0

ψµ(x)
(
η(x)− U(x, µ)η(x+ aµ̂)U(x, µ)−1

)
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Advantage of this formulation

• Q-invariance (a part of the supersymmetry) is manifest

even with finite lattice spacings and volume (probably, so

far the unique formulation?)

• global U(1)R symmetry (this is a chiral symmetry!)

U(x, µ) → U(x, µ) ψµ(x) → eiαψµ(x)

φ(x) → e2iαφ(x)

χ(x) → e−iαχ(x) H(x) → H(x)

φ(x) → e−2iαφ(x) η(x) → e−iαη(x)

is also manifest
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Possible disadvantage of the formulation

• The pfaffian Pf{iD} resulting from the integration of

fermionic variables is generally a complex number (lattice

artifact)

• would imply the sign (or phase) problem in Monte Carlo

simulation

cf. H.S. and Taniguchi, JHEP 10 (2005) 082 [hep-lat/0507019]
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Continuum limit:

a→ 0, while g and L are kept fixed

It can be argued that the full SUSY of the 1PI effective

action for elementary fields is restored in this limit

• Power counting

• scalar mass terms are the only source of SUSY breaking

⇐ super-renormalizability

• exact Q-invariance forbids the mass terms
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Monte Carlo study (SU(2) only)
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For SUSY, quantum effect of fermions is vital !

Quenched approximation (SB bosonic action)

〈O〉 =

∫
dµBO e−SB∫
dµB e

−SB

is meaningless, though it provides a useful standard

Here we adopt the re-weighting method

〈〈O〉〉 =

∫
dµO e−S∫
dµ e−S

=
〈OPf{iD}〉
〈Pf{iD}〉

(potential overlap problem)
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We developed a hybrid Monte Carlo algorithm code for the

action SB by using a C++ library, FermiQCD/MDP

For each configuration, we compute the inverse (i.e., fermion

propagator) and the determinant of the lattice Dirac op-

erator iD by using the LU decomposition

Expressing the determinant of the Dirac operator as

det{iD} = reiθ, −π < θ ≤ π

(the complex phase is lattice artifact) we define

Pf{iD} =
√
reiθ/2, ∵ (Pf{iD})2 = det{iD}

However, with this prescription, the sign may be wrong
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Parameters in our Monte Carlo study (β = 2Nc/(a2g2))

N 8 7 6 5 4
β 16.0 12.25 9.0 6.25 4.0

Nconf 1000 10000 10000 10000 10000
ag 0.5 0.571428 0.666666 0.8 1.0

This sequence corresponds to the fixed physical lattice
size Lg = 4.0

For each value of β, we stored 1000–10000 independent
configurations extracted from 106 trajectories of the molec-
ular dynamics

Statistical error is estimated by the jackknife analysis

(The constant ε for the admissibility is fixed to be ε = 2.6)
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One-point SUSY Ward-Takahashi identities
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Since the action is Q-exact, we have 〈〈S〉〉 = 0, or

3∑
i=1

〈〈LBi(x)〉〉+
6∑
i=1

〈〈LFi(x)〉〉+
1

a4g2

〈〈
tr
{
H(x)−

1

2
iΦ̂TL(x)

}2
〉〉

= 0

but
6∑
i=1

〈〈LFi(x)〉〉 = −2(N2
c − 1)

1

a2

and

1

a4g2

〈〈
tr
{
H(x)−

1

2
iΦ̂TL(x)

}2
〉〉

=
1

2
(N2

c − 1)
1

a2

Thus
3∑
i=1

〈〈LBi(x)〉〉 −
3

2
(N2

c − 1)
1

a2
= 0
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• The real part is consistent with the expected identity

within 1.5σ (⇒ strongly supports the correctness of our

code/algorithm)

• The imaginary part is consistent with zero

• No notable difference of the phase-quenched average (⇒
systematic error due to wrong-sign determination is negli-

gible)

• Clear distinction from the quenched average (⇒ effect of

dynamical fermions is properly included)

• Effect of quenching starts at 2-loop ∼ g2 ln(a/L)
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Another exact relation

〈〈QO1(x)〉〉 = 〈〈LB1(x)〉〉+ 〈〈LF1(x)〉〉 = 0
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• The relation is confirmed within 2σ (note the difference

in scale of vertical axis compared to the previous figure)

• The quenched average is certainly inconsistent with the

SUSY relation

• No clear separation between the re-weighted average and

the quenched one (⇐ The effect of quenching starts at 3-

loop ∼ a2g4 ln(a/L))
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Another relation

〈〈QO2(x)〉〉 =
1

a4g2

〈〈
tr
{
−iH(x)Φ̂TL(x)

}〉〉
+ 〈〈LF5(x)〉〉 = 0

but

H(x) =
1

2
iΦ̂TL(x)

and thus

2 〈〈LB2(x)〉〉+ 〈〈LF5(x)〉〉 = 0
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The situation is again similar with the last piece of the

relation

〈〈QO3(x)〉〉 = 〈〈LB3(x)〉〉+ 〈〈LF3(x)〉〉+ 〈〈LF4(x)〉〉+ 〈〈LF6(x)〉〉 = 0
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So far, we have observed WT identities implied by the

exact Q-symmetry of the lattice action

The continuum theory is invariant also under other fermionic

transformations, Q01, Q0 and Q1

Q01Aµ = −εµνψµ Q01ψµ = iεµνDνφ

Q01φ = 0

Q01η = 2H Q01H =
1

2
[φ, η]

Q01φ = −2χ Q01χ = −
1

2
[φ, φ]
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Q0A0 =
1

2
η Q0η = −2iD0φ

Q0A1 = −χ Q0χ = iD1φ

Q0φ = 0

Q0ψ1 = −H Q0H = [φ, ψ1]

Q0φ = −2ψ0 Q0ψ0 =
1

2
[φ, φ]

Another fermionic symmetry Q1 is obtained by further ex-

change ψ0 ↔ ψ1

Invariance under these transformations is expected to be

restored only in the continuum limit
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In the supersymmetric continuum theory〈〈
Q01

1

g2
tr
{
−

1

2
χ[φ, φ]

}〉〉
continuum

=
1

g2

〈〈
tr
{
1

4
[φ, φ]2

}〉〉
continuum

+
1

g2
〈〈tr {−χ[φ, χ]}〉〉continuum = 0

Corresponding to this relation, one might expect

〈〈LB1(x)〉〉+ 〈〈LF2(x)〉〉 → 0?

holds in the continuum limit a→ 0
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• It appears that the average approaches a non-zero num-

ber around 0.15 (not zero)

• This does not contradict with SUSY restoration. The

argument of SUSY restoration is not applied to correlation

functions containing composite operators

• Composite operators LB1(x) and LF2(x) induce logarith-

mic UV divergence at 2-loop level. If SUSY of the 1PI

effective action is restored, this 2-loop level divergence

should be the only source of UV divergence

• Moreover, that remaining 2-loop level divergence is can-

celled out in the sum 〈〈LB1(x)〉〉+ 〈〈LF2(x)〉〉
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• This argument indicates that, if SUSY in the 1PI effective

action restores, 〈〈LB1(x)〉〉+〈〈LF2(x)〉〉 approaches a constant

(but not necessarily zero) as ag → 0

• The behavior is consistent with this picture based on a

restoration of SUSY

• Within almost 1σ the re-weighted average and the quenched

average are degenerate and this also appears consistent

with a perturbative picture (⇐ The effect of quenching

starts at 3-loop ∼ a2g4 ln(a/L))

• So, the figure is consistent with the scenario of SUSY

restoration, but, it may be dangerous to conclude the

restoration of SUSY from the above result alone.
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Another example:〈〈
Q0

1

g2
tr
{
−

1

2
ψ0[φ, φ]

}〉〉
continuum

=
1

g2

〈〈
tr
{
1

4
[φ, φ]2

}〉〉
continuum

+
1

g2

〈〈
tr
{
−ψ0[ψ0, φ]

}〉〉
continuum

= 0

and one might expect

〈〈LB1(x)〉〉+ 〈〈LF3(x)〉〉 → 0?

in the continuum limit a→ 0
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Yet another:

〈〈LB1(x)〉〉+ 〈〈LF4(x)〉〉 → 0?
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Gauge invariant scalar bi-linear operators

Classical “moduli space”

[φ, φ] = 0

This degeneracy is not lifted to all order of loop expansion

(the so-called flat directions)

Gauge-invariant scalar bi-linear operators

a−2 tr{φ(x)φ(x)}
a−2 tr{φ(x)φ(x)}
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a−2 tr{φ(x)φ(x)} is invariant under the global U(1)R transfor-

mation

φ(x) → e2iαφ(x) φ(x) → e−2iαφ(x)

The continuum limit of this quantity itself is meaning-

less, because it is a bare quantity and suffers from UV

divergence. Power counting shows that the over-all UV

divergence comes from the simplest 1-loop diagram and

∼ ln(a/L)g2

If SUSY of the 1PI effective action is restored in the con-

tinuum limit, this 1-loop divergence is the only source of

UV divergence
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So we define the renormalized operator (the normal prod-

uct)

N [a−2 tr{φ(x)φ(x)}] ≡ a−2 tr{φ(x)φ(x)} − (N2
c − 1)c(a/L)g2

This subtraction must remove all the UV divergence of the

composite operator

c(a/L = 1/N) =
1

2N2

N−1∑
n0=0

N−1∑
n1=0

1
1∑

µ=0

(
1− cos

2π

N
nµ

)
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• Clear separation between the re-weighted average and
the quenched one (quantum effect of dynamical fermions)

• Fermions actually uplifts the expectation value !

• The expectation value appears to approach some finite
number (in a unit of g2) in the continuum limit after the
renormalization

• Without the renormalization, there is a tendency that the
expectation values grow as ag → 0

• If SUSY is restored in the continuum limit, the expecta-
tion value is expected to become independent of ag as a→
0. The behavior in figure is more or less consistent with
this expectation (though we need much data to conclude
this)
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Conclusion

• Preliminary numerical study of Sugino’s lattice formula-

tion of 2d N = (2,2) SYM

• WT identities associated with the Q-symmetry were con-

firmed in fair accuracy (⇒ re-weighting method is basically

working)

• On the other hand, all results are consistent with the

basic scenario of SUSY restoration (encouraging), though

we could not conclude the restoration of full SUSY in a

definite level
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Prospects

• Much larger lattice with (RIKEN) PC cluster

• Two-point functions (conservation of SUSY current, mass

spectrum)

• Wilson loops (screening by adjoint fermions?)

• 2d N = (4,4) SYM (and 2d N = (8,8) SYM)
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RIKEN Symposium

Quantum Field Theory and Symmetry

12/22 (Sat.) and 12/23 (Sun.)

You Are Welcome !

To be announced in sg-l (hopefully) soon
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Appendix

Comparison with

Catterall, JHEP 04 (2007) 015 [hep-lat/0612008]

47



-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  0.2  0.4  0.6  0.8  1

ag

G = SU(2) Lg = 3.162

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  0.2  0.4  0.6  0.8  1

ag

real part
imaginary part

phase-quenched
quenched

Expectation values of LB1(x) + LF1(x)

48



-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0  0.2  0.4  0.6  0.8  1

ag

G = SU(2) Lg = 3.162

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0  0.2  0.4  0.6  0.8  1

ag

real part
imaginary part

phase-quenched
quenched

Expectation values of 2LB2(x) + LF5(x)

49



-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0  0.2  0.4  0.6  0.8  1

ag

G = SU(2) Lg = 3.162

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0  0.2  0.4  0.6  0.8  1

ag

real part
imaginary part

phase-quenched
quenched

Expectation values of LB3(x) + LF3(x) + LF4(x) + LF6(x)

50



-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  0.2  0.4  0.6  0.8  1

ag

G = SU(2) Lg = 3.162

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  0.2  0.4  0.6  0.8  1

ag

real part
imaginary part

phase-quenched
quenched

Expectation values of LB1(x) + LF2(x)

51



-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  0.2  0.4  0.6  0.8  1

ag

G = SU(2) Lg = 3.162

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  0.2  0.4  0.6  0.8  1

ag

real part
imaginary part

phase-quenched
quenched

Expectation values of LB1(x) + LF3(x)

52


