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It will be very exciting if non-perturbative questions iIn
SUSY gauge theories can be studied numerically at one’s
will !

e spontaneous SUSY breaking

e string/gauge correspondence

e test of various ‘“solutions” (e.g., Seiberg-Witten)

SUSY vs lattice !

{(Q,QT}~ P

SUSY restores only in the continuum limit !
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Present status:

e For 4d N = 1 SYM (gaugino condensation, degenerate
vacua, Veneziano-Yankielowicz effective action, etc.), nu-
merically promising formulation exists

e Even In this “simplest realistic’” model, no conclusive
evidence of SUSY has been observed

e Investigation of low-dimensional SUSY gauge theories
(simpler UV structure) would thus be useful to test var-
lous ideas

e Kaplan et. al., Sugino, Catterall, Sapporo group. ..

e SUSY QM (16 SUSY charges!) <« Takeuchi-kun



In this work, we carry out a (very preliminary) Monte Carlo

study of Sugino’s lattice formulation of 2d N = (2,2) SYM
(4 SUSY charges)

F. Sugino, JHEP 03 (2004) 067 [hep-lat/0401017]



Two-dimensional square lattice (size L)

Az{anZQ|O§a}M<L}

The lattice action

S=0Qa2 ¥ (olcr) +05(@) +03(2) + 5t {x(w)H(fv)}> ,
where o
O (z) = ajgz tr { @) o), 521}
03(2) = g5 tr {~ix(@)S1L@))
1

1
O3(2) = 5 5 tr { > (@) (3(2) — Ule, m)d(a + amU(%“)_l)}
pn=0
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A lattice counterpart of the BRST-like transformation @

QU (z, 1) = ipu(z)U(z, p)

Qvu(x) = ipp(x)u(x) — i (¢(x) — Uz, w)d(x + af)U (z, ) )
Qp(z) =0

Qx(z) =H(z)  QH(z) = [¢(z),x(2)]

Qp(x) =n(z)  Qn(x) = [¢(2), p(x)]

Q2 = 0 on gauge invariant quantities

From this nilpotency, the lattice action is manifestly invari-
ant under one of four super-transformations, ).



More explicitly

3 6
S =a? Z (Z Lgi(z) + Z Le;(x)+

1 1 . 2
At {H@ — SidTL@)
xeN \i=1 i=1

where

Lgi(z) = -

1 1 _ 5
22t {516, 3@
Lpo(z) = a4192 tr {%@TL(:};)Q}

1
Le3le) = a4lgz tr{ > (@) - Ule, )¢(z + ai)U (2, 1))

p=0

X (5(26) — Uz, w)o(x + ap)U(z, M)l)}

7



and

Lri(x) = ajgz tr {—2n(@)l6(@),n()]}

Lro(z) = ajgz tr {—x (@) [6(2), x(2)]}

LEs(z) = a4192 tr {—vo(z)vo(z) (6(z) + U(z,0)¢(z + ad)U(z,0) 1)}

Lra(e) = 5 tr{~01@¥1(@) (3(2) + U, D3 + oDV, 1))}

Lrs(x) = g otr {zx<x>c2&><x>}

Lrg(z) = a4192 “{ z Z Yu(x) (n(@) — Uz, wn(z + aﬁ)U(f’3>“)1)}

pu=0



Advantage of this formulation

e ()-invariance (a part of the supersymmetry) is manifest
even with finite lattice spacings and volume (probably, so
far the unique formulation?)

e global U(1)r symmetry (this is a chiral symmetry!)

Uz, ) = Uz, ) () — e pu(x)
d(x) — 2 p(x)
x(@) = e x(z)  H(z) — H()

P(z) — e 2"P(x) n(z) — e "*n(x)

IS also manifest



Possible disadvantage of the formulation
e The pfaffian Pf{i:D} resulting from the integration of
fermionic variables is generally a complex number (lattice

artifact)

e would imply the sign (or phase) problem in Monte Carlo
simulation

cf. H.S. and Taniguchi, JHEP 10 (2005) 082 [hep-lat/0507019]
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Continuum limit:

a — 0, while g and L are kept fixed

It can be argued that the full SUSY of the 1PI effective
action for elementary fields is restored in this limit

e Power counting

e scalar mass terms are the only source of SUSY breaking
< super-renormalizability

e exact (@)-invariance forbids the mass terms
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Monte Carlo study (SU(2) only)
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For SUSY, quantum effect of fermions is vital !

Quenched approximation (Sg bosonic action)

IS meaningless, though it provides a useful standard

Here we adopt the re-weighting method

/ duOe™ (o Pf{iD})
/d,ue B (Pf{iD})

(potential overlap problem)
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We developed a hybrid Monte Carlo algorithm code for the
action Sg by using a C++ library, FermiQCD/MDP

For each configuration, we compute the inverse (i.e., fermion
propagator) and the determinant of the lattice Dirac op-
erator :D by using the LU decomposition

Expressing the determinant of the Dirac operator as
det{:D} = re', —nm <0<
(the complex phase is lattice artifact) we define
Pf{iD} = /re'/?, .+ (Pf{iD})2 = det{iD}
However, with this prescription, the sign may be wrong
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To estimate the systematic error introduced with this, we
compute also the phase-quenched average

__(O|Pt{iD}|)
{O) phase-quenched = (IPf{iD}|)
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Parameters in our Monte Carlo study (3 = 2NC/(a292))

N 8 7 6 5 4

3 | 16.0| 1225 9.0 6.25 | 4.0
Neonf | 1000 | 10000 10000 | 10000 | 10000

ag 0.5 | 0.571428 | 0.666666 | 0.8 1.0

This sequence corresponds to the fixed physical lattice
size Lg = 4.0

For each value of 3, we stored 1000—10000 independent
configurations extracted from 106 trajectories of the molec-
ular dynamics

Statistical error is estimated by the jackknife analysis

(The constant ¢ for the admissibility is fixed to be ¢ = 2.6)
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One-point SUSY Ward-Takahashi identities
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Since the action is ()-exact, we have (S) = 0, or

3 6 1 1 5
Y (Lai@)+ Y (Lri@)+s <<tr (@) - LidrL@) >> —0

but
6 , 1
Z (Lri(2)) = —2(NZ = 1)—
=1
and
1 1 2 1, 5 1
0% g2 <<tr {H(w) - EZCDTL(QU)} >> = §(NC — 1)a—2
Thus

3
Z (Lei(x)) ——(N2—1>—
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e [ he real part is consistent with the expected identity
within 1.50 (= strongly supports the correctness of our
code/algorithm)

e T he imaginary part is consistent with zero
e No notable difference of the phase-quenched average (=
systematic error due to wrong-sign determination is negli-

gible)

e Clear distinction from the quenched average (= effect of
dynamical fermions is properly included)

e Effect of quenching starts at 2-loop ~ ¢g2In(a/L)
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Another exact relation

(QO1(x)) = (L1(x))) + (LF1(x))) =0

21



0.25

I|real part — | | |
imaginary part ---x---
0.2 + phase-quenched :-----
quenched 8-
0.15 -
0.1
0.05 |- T .
ob S R X
-0.1 ] ] ] ] ]
0 0.2 0.4 0.6 0.8
ag
Expectation values of Lg1(z) + LE1(x)

22



e The relation is confirmed within 20 (note the difference
in scale of vertical axis compared to the previous figure)

e T he quenched average is certainly inconsistent with the
SUSY relation

e NO clear separation between the re-weighted average and
the quenched one (< The effect of quenching starts at 3-
loop ~ a?¢%In(a/L))
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Another relation
(QO2@) = 4o (tr {~iH@ETL@)} ) + (Lrs(@) = 0
but
H(z) = i®Ti(2)
and thus

2 (Lga(x)) + (Lrs(z)) =0
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The situation is again similar with the last piece of the
relation

(QO3(z)) = (Le3(®))) + (LF3(2)) + (LFa(z)) + (Lre(z)) =0
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So far, we have observed WT identities implied by the
exact @-symmetry of the lattice action

T he continuum theory is invariant also under other fermionic
transformations, Qqg1, Qo and Q;

QOIAM = —euwpu Q01¢u = tepv Dy
Qo1 =0

1
Qo1n = 2H Qo1H = 5[@% ql

_ 1
Qo1¢ = —2x Qoix = —§[¢, ¢]
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1

QoAo = 51 Qon = —2iDg¢

QoA1 = —x Qox = iD1¢

Qo¢p =0

Qoy1 = —H QoH = [¢, 1]
1

Qo¢ = —2¢o Qoo = E[Qﬁ, ¢]

Another fermionic symmetry (1 is obtained by further ex-
change g < 91

Invariance under these transformations is expected to be
restored only in the continuum Ilimit
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In the supersymmetric continuum theory

(@01 tr{~Jxte.a1} )

= (o {Gea?) 4 (e {=x[6. 10D continuum = O

Corresponding to this relation, one might expect

(Le1(2)) + (Lr2(z)) — 07

holds in the continuum Ilimit ¢« — O

continuum
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e It appears that the average approaches a non-zero num-
ber around 0.15 (not zero)

e This does not contradict with SUSY restoration. The
argument of SUSY restoration is not applied to correlation
functions containing composite operators

e Composite operators Lg1(z) and Lg>(z) induce logarith-
mic UV divergence at 2-loop level. If SUSY of the 1PI
effective action is restored, this 2-loop level divergence
should be the only source of UV divergence

e Moreover, that remaining 2-loop level divergence is can-
celled out in the sum {(Lg1(x))) + (LE>(x)))
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e This argument indicates that, if SUSY in the 1PI effective
action restores, (Lg1(x)) + {(LE>(x))) approaches a constant
(but not necessarily zero) as ag — 0O

e [ he behavior is consistent with this picture based on a
restoration of SUSY

e Within almost 10 the re-weighted average and the quenched
average are dedgenerate and this also appears consistent
with a perturbative picture (<= The effect of quenching
starts at 3-loop ~ a?¢*In(a/L))

e SO0, the figure is consistent with the scenario of SUSY
restoration, but, it may be dangerous to conclude the

restoration of SUSY from the above result alone.
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Another example:

<<Qogi2 o {_%wo [¢’ E] } >> continuum

- gi2 <<tr {%[¢’$]2}>>continuum + giz <<tr {—¢O Lo, 5]}>>continuum =0

and one might expect

(Le1(x)) + (LE3(x)) — 07

in the continuum Iimit a — 0
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Yet another:

(Le1(2)) + (Lralz)) — 07
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Gauge invariant scalar bi-linear operators

Classical “moduli space”

[¢,¢] =0
This degeneracy is not lifted to all order of loop expansion
(the so-called flat directions)

Gauge-invariant scalar bi-linear operators

a2 tr{o(z)p(x)}
a2 tr{¢(z)p(x)}
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a2 tr{é(xz)¢(x)} is invariant under the global U(1) transfor-
mation

$(z) — > “P(x) P(x) — e ()

The continuum Ilimit of this quantity itself is meaning-
less, because it is a bare quantity and suffers from UV
divergence. Power counting shows that the over-all UV
divergence comes from the simplest 1-loop diagram and
~In(a/L)g?

If SUSY of the 1PI effective action is restored in the con-
tinuum limit, this 1-loop divergence is the only source of
UV divergence
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So we define the renormalized operator (the normal prod-
uct)

Na=?tr{¢(x)d()}] = a > tr{¢(z)d(z)} — (N& — 1)e(a/L)g?
T his subtraction must remove all the UV divergence of the
composite operator
1 N-1 N-1 1

c(a/Lzl/N)zm >y :

e 2
no=0m1=0 §~ (1 — Cos —Wn,,b)
p=0 N
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e Clear separation between the re-weighted average and
the quenched one (quantum effect of dynamical fermions)

e Fermions actually uplifts the expectation value !

e T he expectation value appears to approach some finite
number (in a unit of ¢2) in the continuum limit after the
renormalization

e Without the renormalization, there is a tendency that the
expectation values grow as ag — 0O

o If SUSY is restored in the continuum limit, the expecta-
tion value is expected to become independent of ag as a —
0. The behavior in figure is more or less consistent with
this expectation (though we need much data to conclude
this)
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Conclusion

e Preliminary numerical study of Sugino’s lattice formula-
tion of 2d N = (2,2) SYM

e W identities associated with the Q-symmetry were con-
firmed in fair accuracy (= re-weighting method is basically
working)

e On the other hand, all results are consistent with the
basic scenario of SUSY restoration (encouraging), though
we could not conclude the restoration of full SUSY in a
definite level
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Prospects
e Much larger lattice with (RIKEN) PC cluster

e Two-point functions (conservation of SUSY current, mass
spectrum)

e Wilson loops (screening by adjoint fermions?)

e 2d N = (4,4) SYM (and 2d N = (8,8) SYM)
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RIKEN Symposium
Quantum Field Theory and Symmetry

12/22 (Sat.) and 12/23 (Sun.)

You Are Welcome !

To be announced in sg-1 (hopefully) soon
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Appendix
Comparison with

Catterall, JHEP 04 (2007) 015 [hep-lat/0612008]
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