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§ Introduction
¯ Wilson’s criterion for quark confinement:

Wilson loop operator: WC[A ]
= trace of the holonomy operator for Yang-Mills connection

WC[A ] := tr
[
P exp

{
ig

∮
C

dxµAµ(x)
}]

/tr(1)

SYM[A ] =
∫

dDx
1
2
tr[Fµν(x)Fµν(x)]

W (C) :=〈WC[A ]〉YM = Z−1
YM

∫
dµ[A ]e−SYM[A ]WC[A ]

Area law of the Wilson loop average W (C) := 〈WC[A ]〉YM ∼ exp(−σ|Area(C)|)
=⇒ linear potential of static inter-quark potential V (r); V (r) ∼ σr for large r

¯ Topological field configuration as dominant configurations in the functional integral:

Abelian magnetic monopoles, Non-Abelian magnetic monopole, center vortices,
Yang-Mills instantons, merons, elliptic solution, Hopfion, calorons, ...

In the dual superconductor picture, it is expected that (Abelian or non-Abelian)
magnetic monopoles exist and are condensed to cause the dual Meissner effect.
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D=2: Yang-Mills theory is exactly calculable, V (r) = σr, σ = c2(N)g2

2 = N2−1
2N

g2

2 .

Coulomb potential = linear potential in D=2!

¯ Dual superconductor picture was valid in the following models where confinement
was shown in the analytical way.

D=3:

• compact QED3 in Georgi-Glashow model [Polyakov, 1977]

→ magnetic monopole plasma, sine-Gordon theory described by the dual variable

D=4:

• (Lattice) compact QED4 (in the strong coupling region) [Polyakov, 1975]

→ magnetic monopole plasma ;

U(1) link variable → monopole current variable [Banks, Myerson and Kogut, 1977]

• N=2 SUSY YM4 [Seiberg and Witten, 1994] ...

¯ How about (ordinary non-SUSY) YM3, YM4 and QCD4?

Can we introduce magnetic monopoles in these theories?
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¯ Abelian projection and the resulting magnetic monopole [G. ’t Hooft, 1981]:

Even in the pure Yang-Mills theory (without adjoint Higgs scalar fields), Abelian
magnetic monopoles can be introduced as the gauge fixing defect of partial gauge
fixing: G = SU(N) → H = U(1)N−1 [Abelian projection]

G = SU(N) non-Abelian Yang-Mills fields
→ H = U(1)N−1 Abelian gauge fields + Abelian magnetic monopoles + electrically
charged matter fields

Let φ(x) be a Lie-algebra G -valued functional of the Yang-Mills field Aµ(x). Suppose
that it transforms in the adjoint representation under the gauge transformation:

φ(x) → φ′(x) := U(x)φ(x)U†(x) ∈ G = su(N), U(x) ∈ G, x ∈ RD.

e.g., φ(x) = F12(x), FµνFµν, Fµν(x)D2Fµν(x)

For G = SU(2), the location of magnetic monopole is determined by simultaneous
zeros of φ(x):

φA(x) = 0 (A = 1, 2, 3).
=⇒ The magnetic monopole is a topological object of co-dimension 3.

D=3: 0-dimensional point defect → magnetic monopole

D=4: 1-dimensional line defect → magnetic monopole loop (closed loop)
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• Numerical simulation on the lattice in the Maximal Abelian gauge (MAG):

For the SU(2) Cartan decomposition: Aµ = Aa
µ

σa

2 + A3
µ

σ3

2 (a = 1, 2),

Abelian-projected Wilson loop
〈

exp
{

ig

∮
C

dxµA3
µ(x)

} 〉MAG

YM
∼ e−σAbel|S| !?

· Abelian dominance ⇔ σAbel ∼ σNA (92±4)% [Suzuki & Yotsuyanagi,PRD42,4257,1990]
The magnetic monopole of the Dirac type appears in the diagonal part A3

µ of Aµ(x).

A3
µ = Monopole part + Photon part,

· Monopole dominance ⇔ σmonopole ∼ σAbel (95)%
[Stack, Neiman & Wensley, hep-lat/9404014][Shiba & Suzuki, hep-lat/9404015]

MAG is given by minimizing the functional FMAG w.r.t. the gauge transf. Ω.

FMAG[A ] :=
1
2
(Aa

µ, Aa
µ) =

∫
dDx

1
2
Aa

µ(x)Aa
µ(x) (a = 1, 2)

δωFMAG = (δωAa
µ, Aa

µ) = ((Dµ[A]ω)a, Aa
µ) = −(ωa, Dab

µ [A3]Ab
µ)

The continuum form is Dab
µ [A3]Ab

µ := [∂µδab − gεab3A3
µ(x)]Ab

µ(x) = 0 (a, b = 1, 2).
In general, MAG fixes G/H, leaving H unbroken.
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• Numerical simulations for Abelian monopole current

[Chernodub & Polikarpov, hep-th/9710205]

Figure 1: The abelian monopole currents for the confinement (a) (β = 2.4, 104 lattice)
and the deconfinement (b) phases (β = 2.8, 123 · 4 lattice).

It is important to notice that the nature of the defects depends on the order of the
zeros. For first-order zeros, one obtains magnetic monopoles. The defects from zeros
of second order are Hopfion which is characterized by a topological invariant called
Hopf index for the Hopf map S3 → SU(2)/U(1) ' S2 with non-trivial Homotopy
π3(S2) = Z.
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It is rather delicate whether magnetic monopole loops on the lattice in the MAG
can survive in the continuum limit.

To clairfy these issues, we need analytical solutions of magnetic monopole loop in
in D = 4 pure Yang-Mills theory.

The purpose of this talk is to give an analytical solution representing circular
magnetic monopole loops joining a pair of merons in the four-dimensional Euclidean
SU(2) Yang-Mills theory.

This is achieved by solving the differential equation for the adjoint color (magnetic
monopole) field in the two–meron background field within the recently developed
reformulation of the Yang-Mills theory.

Our analytical solution corresponds to the numerical solution found by Montero and
Negele on a lattice.

This result strongly suggests that a meron pair is the most relevant quark confiner
in the original Yang-Mills theory, as Callan, Dashen and Gross suggested long ago.

original Yang-Mills: merons
⇐⇒ dual Yang-Mills: magnetic monopole loops
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§ What are merons?

instanton meron

discovered by BPST 1975 DFF 1976
DνFµν = 0 YES YES
self-duality ∗F = F YES NO
Topological charge QP (0),±1,±2, · · · (0),±1/2,±1, · · ·
charge density DP

6ρ4

π2
1

(x2+ρ2)4
1
2δ

4(x − a) + 1
2δ

4(x − b)

solution A A
µ (x) g−1ηA

µν
2(x−a)ν

(x−a)2+ρ2 g−1
[
ηA

µν
(x−a)ν

(x−a)2
+ ηA

µν
(x−b)ν

(x−b)2

]
Euclidean finite action (logarithmic) divergent action

SYM = (8π2/g2)|QP |
tunneling between QP = 0 and QP = ±1 QP = 0 and QP = ±1/2

vacua in the A0 = 0 gauge vacua in the Coulomb gauge
multi-charge solutions Witten, ’t Hooft, ???

Jackiw-Nohl-Rebbi, ADHM not known
Minkowski trivial everywhere regular

finite, non-vanishing action

An instanton dissociates into two merons?
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§ Relevant works (excluding numerical simulations)

papers original configuration dual counterpart method

CG95 one instanton a straight magnetic line MAG (analytical)
BOT96 one instanton no magnetic loop MAG (numerical)
BHVW00 one instanton no magnetic loop LAG (analytical)
RT00 one meron a straight magnetic line LAG (analytical)

BOT96 instaton-antiinstanton a magnetic loop MAG (numerical)
instaton-instaton a magnetic loop MAG (numerical)

RT00 instaton-antiinstanton two magnetic loops LAG (numerical)

Ours KFSS08 one instanton no magnetic loop New (analytical)
0806.3913 one meron a straight magnetic line New (analytical)
[hep-th] two merons circular magnetic loops New (analytical)

CG95=Chernodub & Gubarev, [hep-th/9506026], JETP Lett. 62, 100 (1995).
BOT96=Brower, Orginos & Tan, [hep-th/9610101], Phys.Rev.D 55, 6313–6326 (1997).
BHVW00=Bruckmann, Heinzl, Vekua & Wipf, [hep-th/0007119], Nucl.Phys.B 593,
545–561 (2001). Bruckmann, [hep-th/0011249], JHEP 08, 030 (2001).
RT00=Reinhardt & Tok, [hep-th/0011068], Phys.Lett. B505, 131–140 (2001). hep-
th/0009205.
BH03=Bruckmann & Hansen, [hep-th/0305012], Ann.Phys. 308, 201–210 (2003).
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§ Reformulating Yang-Mills theory in terms of new
variables

SU(2) Yang-Mills theory A reformulated Yang-Mills theory
written in terms of ⇐⇒ written in terms of new variables:
AA

µ (x) (A = 1, 2, 3) NLCV nA(x), cµ(x), XA
µ (x) (A = 1, 2, 3)

We introduce a ”color unit field” n(x) of unit length with three components

n(x) = nA(x)TA, TA = σA/2 ⇐⇒ n(x) = (n1(x), n2(x), n3(x))

i.e.,tr[n(x)n(x)] = 1/2 or n(x) · n(x) = nA(x)nA(x) = 1

Expected role of the color field:

• The color field n(x) plays the role of recovering color symmetry which will be lost
in the conventional approach, e.g., the MA gauge.

• The color field n(x) carries topological defects responsible for non-perturbative
phenomena, e.g., quark confinement.

New variables nA(x), cµ(x), XA
µ (x) should be given as functionals of the original AA

µ (x).
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A new viewpoint of the Yang–Mills theory

δθn(x) = gn(x) × θ(x) = gn(x) × θ⊥(x)

δωAµ(x) = Dµ[A]ω(x)

By introducing a color field, the original Yang-Mills (YM) theory is enlarged to the
master Yang–Mills (M-YM) theory with the enlarged gauge symmetry G̃ . By imposing
the reduction condition, it is reduced to the equipollent Yang-Mills theory (YM’) with
the gauge symmetry G′. The overall gauge fixing condition can be imposed without
breaking color symmetry, e.g. Landau gauge.
[K.-I.K., Murakami & Shinohara, hep-th/0504107; Prog.Theor.Phys. 115, 201 (2006).]
[K.-I.K., Murakami & Shinohara, hep-th/0504198; Eur.Phys.C42, 475 (2005)](BRST)
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§ Bridge between instanton and magnetic monopole

(i) For a given SU(2) Yang-Mills field Aµ(x) = AA
µ (x)σA

2 , the color field n(x) is
obtained by solving the reduction differential equation (RDE):

n(x) × Dµ[A]Dµ[A]n(x) = 0,

where the color field has the unit length

n(x) · n(x) = 1.

(ii) Once the color field n(x) is known, the gauge-invariant “magnetic-monopole
current” k is constructed by

k := δ ∗ f = ∗df,
where f is the gauge-invariant two-form defined from the connection one-form A by

fαβ(x) = ∂α[n(x) · Aβ(x)] − ∂β[n(x) · Aα(x)] + ig−1n(x) · [∂αn(x) × ∂βn(x)].

The current k is conserved in the sense that δk = 0.
In D = 4 dimensions, kµ = 1

2εµναβ∂νfαβ. The magnetic charge qm =
∫

d3σ̃µkµ is
gauge invariant and satisfies the Dirac quantization condition:

qm = 4πg−1n, n ∈ Z = {· · · ,−2,−1, 0,+1,+2, · · · }
12



We now give a new form of the RDE (eigenvalue-like eq.):

−Dµ[A]Dµ[A]n(x) = λ(x)n(x) (λ(x) ≥ 0).

Once n(x) satisfying the RDE is known, the value of the reduction functional Frc is
immediately calculable as an integral of λ(x) over the spacetime RD as

Frc =
∫

dDx
1
2
(Dµ[A]n(x)) · (Dµ[A]n(x))

=
∫

dDx
1
2
n(x) · (−Dµ[A]Dµ[A]n(x))

=
∫

dDx
1
2
n(x) · λ(x)n(x) =

∫
dDx

1
2
λ(x).

For a given Yang-Mills field Aµ(x), look for the unit vector field n(x) such that
−Dµ[A]Dµ[A]n(x) is proportional to n(x) with the smallest value of the reduction
functional Frc which is an integral of the scalar function λ(x) over the spacetime RD.

Our method should be compared with that of the conventional Laplacian Abelian
gauge (LAG). Bruckmann et al. [hep-th/0007119], Nucl.Phys.B 593, 545–561 (2001).
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§ Meron solution [De Alfaro, Fubini and Furlan, 1976, 1977]

One meron solution at the origin x = 0 (non pure gauge everywhere)

AM
µ (x) = g−1ηA

µν

xν

x2

σA

2
=

1
2
ig−1U(x)∂µU−1(x), U(x) =

ēαxα√
x2

∈ SU(2)

DP (x) :=
1

16π2
tr(Fµν ∗ Fµν) =

1
2
δ4(x), Qp :=

∫
d4xDP (x) =

1
2
.

↓ Conformal transformation : xµ → zµ = 2a2(x + a)µ

(x + a)2
− aµ,

meron-antimeron solution (one meron at x = a and one antimeron at x = −a)

AM
µ (x) → ∂µzνAM

ν (z) = ...

↓ Singular gauge transformation : U(x + a),
meron-meron or dimeron solution (one meron at x = a and another meron at x = −a)

AMM
µ (x) = −g−1

[
ηA

µν

(x + a)ν

(x + a)2
+ ηA

µν

(x − a)ν

(x − a)2

]
σA

2
, DP (x) =

1
2
δ4(x+a)+

1
2
δ4(x−a)
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§ Smeared meron pair [Callan, Dashen and Gross, 1978]

d
I

II

III

R

R

1

2

0

I’III’
II’

Figure 2: The concentric sphere geometry for a smeared meron (left panel) is
transformed to the smeared two meron configuration (right panel) by the conformal
transformation including the inversion about the point d.

AsMM
µ (x) =

σA

2
ηA

µνxν ×


2

x2+R2
1

I:
√

x2 < R1

1
x2 II: R1 <

√
x2 < R2

2
x2+R2

2
III:

√
x2 > R2

,

SsMM
YM =

8π2

g2
+

3π2

g2
ln

R2

R1
, QI

P =
1
2
, QII

P = 0, QIII
P =

1
2
,

One-instanton limit: |R1 − R2| ↓ 0 (R2/R1 ↓ 1).
One-meron limit: R2 ↑ ∞ or R1 ↓ 0 (R2/R1 ↑ ∞). SsMM

YM logarithmic divergence
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§ Circular magnetic monopole loops joining the smeared
meron pair
The RDE is conformal covariant and gauge covariant, while the reduction functional is
conformal invariant and gauge invariant.
The minimum of the reduction functional is achieved by

λ(x) =


8x2

(x2+R2
1)

2 I: 0 <
√

x2 < R1; (J, L) = (1, 0), nA(x) = Y A
(1,0) = const.

2(b̂·x)2

x2[x2−(b̂·x)2]
II: R1 <

√
x2 < R2; (J, L) = (1

2,
1
2), nA(x) ' Y A

(1/2,1/2) = hedgehog

8R2
2

x2(x2+R2
2)

2 III: R2 <
√

x2; (J, L) = (0, 1), nA(x) = Y A
(0,1)(x) = Hopf

.

Frc =
∫

R4
d4xλ(x) < ∞ for R1, R2 > 0.

After the conformal transformation and the singular gauge transformation,

n̄(x)II′ =
2a2

(x + a)2
b̂νη

A
µνzµU−1(x + a)σAU(x + a)/

√
z2 − (b̂ · z)2,

The magnetic monopole is dictated by the simultaneous zeros of b̂νη
A
µνzµ for A = 1, 2, 3:

0 = b̂νη
A
µν[2a2(xµ + aµ) − (x + a)2aµ] (A = 1, 2, 3),
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d
I

II
III

R

R

1

2

0 III'

II'
d I '

Without loss of generality, we can fix the direction of connecting two merons as
aµ := dµ/2 = δµ4T .

If b̂µ is parallel to aµ, i.e., b̂µ = δµ4 (or b̂ = 0),

xA = 0 (A = 1, 2, 3) (1)

i.e., the magnetic current is a straight line going through two merons at (0,±T ).
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d
I

II
III

R

R

1

2

0 III'

II'
d I '

If b̂µ is perpendicular to aµ (or b̂µ = δµ`b̂`, ` = 1, 2, 3), i.e., b̂4 = 0,

x2
` + x2

4 = a2. (2)

a circular magnetic monopole loop with its center at the origin 0 in z space and the
radius

√
a2 joining two merons at (0,±T ) exists on the plane spanned by aµ and b̂`

(` = 1, 2, 3).
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d
I

II
III

R

R

1

2

0 III'

II'
d I '

Other chices of b̂µ = (b̂, b̂4)

x × b̂ = 0 &

(
x +

a · b̂
|b̂|

b̂

|b̂|

)2

+ x2
4 =

(
a2 +

(a · b̂)2

|b̂|2

)
, (3)

where b̂ is the three-dimensional part of unit four b̂µ (b̂µb̂µ = b̂2
4 + |b̂|2 = 1).

These equations express circular magnetic monopole loops

the center at x = −a·b̂
|b̂|

b̂
|b̂|, x4 = 0 with the radius

√
a2 + (a·b̂)2

|b̂|2 (≥
√

a2)

joining two merons at ±aµ on the plane specified by aµ and b̂
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§ Monopole and vortex content of a meron pair

• A. Montero and J.W. Negele, hep-lat/0202023, Phys.Lett.B533, 322-329 (2002).
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Figure 3: Figure A shows the action density S(t,x,y,z) for the meron pair with d = 16 and c = 1 (configuration IV) as

a function of x and t, with y and z fixed to the values that maximize the action density. Figure B shows the absolute value

of the discriminant of the three lowest Laplacian eigenvectors, D(t, x, y, z), to the 1/4 power as a function of x and t, for

the same meron pair configuration and values of the y and z coordinates used in figure A. Figure C shows the absolute value

of D(t, x, y, z) to the 1/4 power as a function of x and y for z fixed to the value that maximizes the action density and t

fixed to the midpoint between the two merons.
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§ Conclusion and discussion

Summarizing the results,

papers original configuration dual counterpart method

CG95 one instanton a straight magnetic line MAG (analytical)
BOT96 one instanton no magnetic loop MAG (numerical)
BHVW00 one instanton no magnetic loop LAG (analytical)
RT00 one meron a straight magnetic line LAG (analytical)

BOT96 instaton-antiinstanton a magnetic loop MAG (numerical)
instaton-instaton a magnetic loop MAG (numerical)

RT00 instaton-antiinstanton two magnetic loops LAG (numerical)

Ours one instanton no magnetic loop New (analytical)
one meron a straight magnetic line New (analytical)

KFSS08 two merons circular magnetic loops New (analytical)

d
I

II
III

R

R

1

2

0 III'

II'
d I '
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We have obtained an analytical solution representing circular magnetic monopole
loops (supported by a meron pair) in a dual description of the pure Yang-Mills theory.

In the original Yang-Mills theory, a pair of merons can be regarded as the dominant
quark confiner. → area law of the Wilson loop average

¯ Future subjects to be investigated:

• Extending our results to SU(3):
[K.-I. K., arXiv:0801.1274 [hep-th], Phys. Rev. D 77, 085029 (2008)]
[K.-I. K., Shinohara and Murakami, arXiv:0803.0176 [hep-th], Prog. Theor. Phys. 120,
1–50 (2008)]
For the Wilson loop in the fundamental rep.,

n ∈ SU(3)/U(2) 6= SU(3)/[U(1) × U(1)]

• Relationship between other topological objects: For gauge-invariant vortices equivalent
to center vortices,
[K.-I. K., arXiv:0802.3829 [hep-th], J. Phys. G: Nucl. Part. Phys. 35, 085001 (2008)]

• Clarifying the role of elliptic solutions interpolating dimeron and one-instanton:
Cervero, Jacobs & Nohl (1977). one-parameter family of solutions,
k=0: meron, k=1: instanton
dissociation of an instanton into two merons?
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• Obtaining the integration measure for collective coordinates:
of circular magnetic monopole loops

• Considering the relationship with the Gribov problem:
non-trivial Coulomb gauge vacua with QP = ±1/2

• D-brane intepretation: D-0 brane ↔ meron
Drukker, Gross and Itzhaki, [hep-th/0004131], Phys.Rev.D62,086007 (2000).

• Evaluating the Wilson loop average ...

Thank you for your attention!
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§ Instantons and monopoles

A. Hart and M. Teper, e-Print:hep-lat/9511016, Phys.Lett.B371: 261-269, 1996.
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Figure 4: Three dimensional projections of the mutual monopole loop surrounding an instanton–anti-instanton pair

(centres marked) of size ρ = 3 under increasing rotation angle as detailed in the text. The loops are flat in the fourth

direction.
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• Reinhardt and Tok, [hep-th/0011068], Phys.Lett.B 505, 131–140 (2001). hep-
th/0009205.
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Figure 5: Plot of the two magnetic monopole loops for the gauge potential (??) projected onto the x1 − x2 − x0-space

(dropping the x3-component). Rotations with angle π around the x1- , x2- and x3-axis interchange the different monopole

branches. The thick dots show the positions of the instantons.
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§ Simplifying RDE

(1) First, we adopt the CFtHW Ansatz:

gAµ(x) =
σA

2
gAA

µ (x) =
σA

2
ηA

µνfν(x), fν(x) := ∂ν lnΦ(x),

where ηA
µν = η(+)A

µν is the symbol defined by ηA
µν ≡ η(+)A

µν := εAµν4+δAµδν4−δµ4δAν.

{[−∂µ∂µ + 2fµfµ]δAB + 2εABCηC
µνfν(x)∂µ}nB(x) = λ(x)nA(x).

The Yang-Mills field in the CFtHW Ansatz satisfies simultaneously

the Lorentz gauge:
∂µAA

µ (x) = 0,

and the maximal Abelian gauge (MAG):

Dµ[A3]A±
µ (x) := (∂µ − igA3

µ)(A1
µ(x) ± iA2

µ(x)) = 0.
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(2) SO(4) symmetry: The angular part is expressed in terms of angular momentum
derived from the decomposition: so(4) ∼= su(2) + su(2). The generators of SO(4):

Lµν = −i(xµ∂ν − xν∂µ), µ, ν ∈ {1, 2, 3, 4}.

yield two independent SU(2) generators (A ∈ {1, 2, 3}):

MA :=
1
2
(LA − KA) = − i

2
η̄A

µνxµ∂ν, NA :=
1
2
(LA + KA) = − i

2
ηA

µνxµ∂ν,

using Lj := 1
2εjk`Lk`, Kj := Lj4, j, k, ` ∈ {1, 2, 3}. The Casimir operators ~M2 :=

MAMA and ~N2 := NANA with eigenvalues half-integers:

~M2 :=MAMA → M(M + 1), M ∈ {0, 1/2, 1, 3/2, · · · },

The generators for isospin S = 1 are

(SA)BC := iεABC = (SC)AB.

It is easy to see that ~S2 is a Casimir operator and ~S2 has the eigenvalue

~S2 := SASA → S(S + 1) = 2,
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since (~S2)AB = (SC)AD(SC)DB = iεDCAiεBCD = 2δAB.

Now we introduce the conserved total angular momentum ~J by

~J = ~L + ~S,

with the eigenvalue where ~L = ~M or ~L = ~N .

~J2 → J(J + 1), J ∈ {L + 1, L, |L − 1|},

Thus, a complete set of commuting observables is given by the Casimir operators,
~J2, ~L2, ~S2 and their projections, e.g., Jz, Lz, Sz.

By using ~S · ~L = ( ~J2 − ~L2 − ~S2)/2, the RDE is rewritten in the form: the RDE is
rewritten in the form: fν(x) := ∂ν ln Φ̃(x2) = xνf(x)

{−∂µ∂µδAB + 2f(x)( ~J2 − ~L2 − ~S2)AB + xµxµf2(x)(~S2)AB}nB(x) = λ(x)nA(x),
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(3) The symmetry suggests that n(x) is separated into the radial and angular part:

n(x) =nA(x)σA = ψ(R)Y A
(J,L)(x̂)σA,

R :=
√

xµxµ ∈ R+, x̂µ := xµ/R ∈ S3

where ~Y(J,L)(x̂) = {Y A
(J,L)(x̂)}A=1,2,3 is the vector spherical harmonics on S3:

~L2Y A
(J,L)(x̂) =L(L + 1)Y A

(J,L)(x̂),

~J2Y A
(J,L)(x̂) =J(J + 1)Y A

(J,L)(x̂),

~S2Y A
(J,L)(x̂)σA =S(S + 1)Y A

(J,L)(x̂)σA,

In this form, the covariant Laplacian reduces to the diagonal form

[−∂µ∂µ + V (x)]nA(x) = λ(x)nA(x),

V (x) := 2f(x)[J(J + 1) − L(L + 1) − 2] + 2x2f2(x).

Using −∂µ∂µ = −∂R∂R − 3
R∂R + 4~L2

R2 , we arrive at

[−∂R∂R − (3/R)∂R + Ṽ (x)]nA(x) = λ(x)nA(x), Ṽ (x) := 4L(L + 1)/x2 + V (x).
29



(4) Unit vector condition and angular part

We now take into account the fact that n(x) has the unit length:

1 = nA(x)nA(x) = ψ(R)ψ(R)Y A
(J,L)(x̂)Y A

(J,L)(x̂).

If the vector spherical harmonics happens to be normalized at every spacetime point as

1 = Y A
(J,L)(x̂)Y A

(J,L)(x̂),

then we can take without loss of generality

ψ(R) ≡ 1.

Then, n(x) is determined only by the vector spherical harmonics:

nA(x) = Y A
(J,L)(x̂).

However, 1 = Y A
(J,L)(x̂)Y A

(J,L)(x̂) is not guaranteed for any set of (J, L) except for
some special cases.
Usually, the orthonormality of the vector spherical harmonics is given with respect to
the integral over S3 with a finite volume:

∫
S3 dΩ Y A

(J,L)(x̂)Y A
(J ′,L′)(x̂) = δJJ ′δLL′.
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§ One instanton case [Simple reproduction of essentials of BOT & BHVW]

One-instanton configuration in the regular gauge with zero size: f(x) = 2
x2, and

V (x) =
4
x2

[J(J + 1) − L(L + 1)], Ṽ (x) =
4
x2

J(J + 1) ≥ 0.

(J, L) = (0, 1) gives the lowest value of Ṽ (x) at every x. The lowest value of λ(x) ≥ 0
is obtained λ(x) = Ṽ (x) = 0 by setting ψ(R) ≡ const. if the corresponding vector
harmonics is orthonormal.

The vector spherical harmonics Y(0,1)(x̂) is 3-fold degenerate (B = 1, 2, 3):

Y(0,1)(x̂) =
3∑

B=1

âBY(0,1),(B)(x̂)

=â1

x̂2
1 − x̂2

2 − x̂2
3 + x̂2

4

2(x̂1x̂2 − x̂3x̂4)
2(x̂1x̂3 + x̂2x̂4)

 + â2

 2(x̂1x̂2 + x̂3x̂4)
−x̂2

1 + x̂2
2 − x̂2

3 + x̂2
4

2(x̂2x̂3 − x̂1x̂4)

 + â3

 2(x̂1x̂3 − x̂2x̂4)
2(x̂2x̂3 + x̂1x̂4)

−x̂2
1 − x̂2

2 + x̂2
3 + x̂2

4

 ,

It is easy to check that Y(0,1)(x̂) are orthonormal at every point: Y(0,1),(B)(x̂) ·
Y(1,0),(C)(x̂) := Y A

(0,1),(B)(x̂)Y A
(1,0),(C)(x̂) = δBC.
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The solution is given by the manifestly Lorentz covariant Lie-algebra valued form:

n(x) := nA(x)σA = âBY A
(0,1),(B)(x̂)σA = âBxαēασBxβeβ/x2,

ēµ = (iσA,1), eµ := (−iσA,1), or in the vector component

nA(x) = âBY A
(0,1),(B)(x̂) = âBxαxβη̄B

αγηA
γβ/x2.

It is directly checked that it is indeed the solution of the RDE:

−∂µ∂µnA(x) =
8
x2

nA(x),

2εABCηC
µνfν(x)∂µnB(x) = −8f(x)nA(x) = −16

x2
nA(x).

Then, for (J, L) = (0, 1), we arrive at V (x) = −8/x2 Ṽ (x) = 0,

λ(x) = V (x) + [−∂µ∂µnA(x)]/nA(x) ≡ 0 for any A, no sum over A.

Thus this solution is an allowed one, since the solution gives a finite (vanishing) value
for the functional Frc=0.
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The solution gives a map Y(0,1),(B) from S3 to S2, which is known as the standard
Hopf map. Therefore, the only zeros of φA(x) in the solution nA(x) = φA(x)/|φ(x)| =
φA(x)/

√
φB(x)φB(x) are the origin and the set of magnetic monopoles consists of

the origin only, in other words, the magnetic monopole loop is shrank to a single
point. Therefore, we have no monopole loop with a finite and non-zero radius for the
Yang-Mills field of one instanton with zero size in the regular gauge.

For one instanton with size ρ, f(x2) = 2
x2+ρ2,

V (x) =
4

x2 + ρ2
[J(J + 1) − L(L + 1)] − 8ρ2

(x2 + ρ2)2
.

The lowest λ(x) is realized for distinct set of (J, L) depending on the region of x. This
case is obtained by one-instanton limit of two meron case to be discussed later.
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One instanton in the singular gauge

gAµ(x) =
σA

2
η̄A

µνxνf(x2), f(x2) =
2ρ2

x2(x2 + ρ2)
.

The results in the previous section hold by replacing ηA
µν by η̄A

µν. In this case, we have

V (x) =
4ρ2

x2(x2 + ρ2)
[J(J + 1) − L(L + 1) − 2] +

8ρ4

x2(x2 + ρ2)2
.

We focus on the zero size limit ρ → 0 (or the distant region x2 → ∞):

V (x) ' 0, Ṽ (x) ' 4L(L + 1)/x2.

The solution is given at (J, L) = (1, 0), i.e., n(x) = Y(1,0), which has the lowest value
of λ(x): λ(x) ≡ 0. For (J, L) = (1, 0), the state is 3-fold degenerate: n(x) = Y(1,0) is
written as a linear combination of them: Y(1,0) = (Y 1

(1,0), Y
2
(1,0), Y

3
(1,0))

T

Y(1,0) =
3∑

α=1

ĉαY(1,0),(α) = ĉ1

1
0
0

 + ĉ2

0
1
0

 + ĉ3

0
0
1

 .
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It constitutes the orthonormal set: Y(1,0),(α) · Y(1,0),(β) := Y A
(1,0),(α)Y

A
(1,0),(β) = δαβ.

Therefore, the solution is given by a constant:

nA(x) =
3∑

α=1

ĉαY A
(1,0),(α) = ĉA.

In this case, ∂µnA(x) = 0, ∂µ∂µnA(x) = 0 and

λ(x) = V (x) = 2x2f2(x) =
8ρ4

x2(x2 + ρ2)2
. (1)

One-instanton in the singular gauge yields a finite reduction functional:

Frc =
∫

d4xλ(x) < ∞. (2)
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§ One meron case [Simple reproduction of Reinhardt & Tok (2001)]

One-meron configuration, f(x2) = 1
x2,

V (x) =
2
x2

[J(J + 1) − L(L + 1) − 1], Ṽ (x) =
2
x2

[J(J + 1) + L(L + 1) − 1] > 0.

For one meron, we find that (J, L) = (1/2, 1/2) gives the lowest Ṽ (x). This suggests
that the solution might be given by Y(1/2,1/2),(µ)(x̂) = ηA

µνx̂ν (µ = 1, 2, 3, 4)

Y(1/2,1/2)(x̂) =
4∑

µ=1

b̂µY(1/2,1/2),(µ)(x̂)

= b̂1

−x̂4

x̂3

−x̂2

 + b̂2

−x̂3

−x̂4

x̂1

 + b̂3

 x̂2

−x̂1

−x̂4

 + b̂4

x̂1

x̂2

x̂3

 ,

where a unit four-vector b̂µ (µ = 1, 2, 3, 4) denote four coefficients of the linear
combination for 4-fold generate Y(1/2,1/2),(µ)(x̂) (µ = 1, 2, 3, 4).

However, Y A
(1/2,1/2),(µ)(x̂) are non-orthonormal sets at every spacetime point:

Y(1/2,1/2),(µ)(x̂) · Y(1/2,1/2),(ν)(x̂) 6= δµν.
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Nevertheless, we find that the unit vector field:

nA(x) = b̂νη
A
µνx̂µ/

√
1 − (b̂ · x̂)2,

constructed from Y(1/2,1/2),(µ)(x̂) = ηA
µνx̂ν (µ = 1, 2, 3, 4), can be a solution of RDE.

In fact,

−∂µ∂µnA(x) =
2

x2 − (b̂ · x)2
nA(x),

2εABCηC
µνfν(x)∂µnB(x) = −4f(x)nA(x) = − 4

x2
nA(x).

Then, for (J, L) = (1/2, 1/2), we conclude that V (x) = −2/x2, Ṽ (x) = 1/x2,

λ(x) =
2(b̂ · x)2

x2[x2 − (b̂ · x)2]
.

The solution is of the hedgehog type. The magnetic monopole current is obtained as
simultaneous zeros of b̂νη

A
µνxµ = 0 for A = 1, 2, 3.

37



Taking the 4th vector, the magnetic monopole current is located at x1 = x2 =
x3 = 0, i.e., on the x4 axis. Whereas, if the 3rd vector is taken b̂µ = δµ3, the magnetic
monopole current flows at x1 = x2 = x4 = 0, i.e., on x3 axis. In general, it turns out
that the magnetic monopole current kµ is located on the straight line parallel to b̂µ

going through the origin.

The obtained λ(x) is invariant under a subgroup SO(3) of the Euclidean rotation
SO(4). In other words, once we select b̂µ, SO(4) symmetry is broken to SO(3) just
as in the spontaneously broken symmetry. This result is consistent with a fact that the
magnetic monopole current kµ flows in the direction of b̂µ and the symmetry is reduced
to the axial symmetry, the rotation group SO(3), about the axis in the direction of a
four vector b̂µ.

It is instructive to point out that the Hopf map Y(0,1) also satisfies the RDE.
Therefore, it is necessary to compare the value of the reduction functional of (J, L) =
(1/2, 1/2) with that of (J, L) = (0, 1). In the (J, L) = (0, 1) case, we find

λ(0,1)(x) =
2
x2

=
2

x2
1 + x2

2 + x2
3 + x2

4

.
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For instance, we can choose b̂µ = δµ3 without loss of generality:

λ(1/2,1/2)(x) =
2x2

3

[x2
1 + x2

2 + x2
3 + x2

4][x
2
1 + x2

2 + x2
4]

.

Note that the integral of λ(1/2,1/2)(x) over the whole spacetime R4 is obviously smaller
than that of λ(0,1)(x), although λ(0,1)(x) < λ(1/2,1/2)(x) locally inside a cone with the

symmetric axis b̂µ, i.e., (b̂ · x̂)2 ≥ 1/2.

The reduction functional in (J, L) = (1/2, 1/2) case reads

Frc =4π2

∫ L3

0

dx3x3,

where we have defined r2 := x2
1 + x2

2 + x2
4.

Although Frc remains finite as long as L3 is finite, it diverges for L3 → ∞, i.e, when
integrated out literally in the whole spacetime R4. In the next section, we see that this
difficulty is resolved for two meron configuration.
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