Instantons in Deformed Super Yang-Mills Theories

Hiroaki Nakajima (Sungkyunkwan U. [成均館大学校], Korea) in collaboration with Katsushi Ito, Takuya Saka (TITech, Japan) and Shin Sasaki (Helshinki U., Finland)

> based on JHEP 07 (2007) 068 [arXiv:0705.3532], [arXiv:0710.2218] and in preparation.

> > @ YITP workshop July 29, 2008.

contents

- 1. Introduction
- 2. Deformation in $\mathcal{N} = 2$ Super Yang-Mills
- 3. Instanton Solution of Deformed $\mathcal{N}=2$ Super Yang-Mills

1

- 4. Instanton Effective Action
- 5. Summary and Outlook

1. Introduction

non-perturbative properties of supersymmetric gauge theory from string theory

- Effective field theory on D-brane $\rightarrow U(N)$ super Yang-Mills
- We turn on the constant closed string backgrounds. (NS-NS B-field, <u>R-R fields</u>)
 - Nekrasov formula for $\mathcal{N}=2$ super Yang-Mills
 - Dijkgraaf-Vafa theory for $\mathcal{N}=1$ supersymmetric gauge theory

Closed string backgrounds play an important role in these cases.

★ Here we will consider $\mathcal{N} = 2$ super Yang-Mills theories in the background of R-R 3-form (with fixed $(2\pi\alpha')^{1/2}\mathcal{F}$).

[Billo-Frau-Fucito-Lerda, 2006]

- Consider D3-D(-1) system in type IIB on $\mathbb{R}^2 \times \mathbb{R}^4/\mathbb{Z}_2$ with constant self-dual R-R 3-form. $(\mathbb{R}^2 \times \mathbb{R}^4/\mathbb{Z}_2 \Rightarrow \mathcal{N} = 2)$
- Calculate the deformed effective action of D(-1)-branes (= instanton from the view point of D3 side).
- And compute the instanton partition function using the localization technique.

 \Rightarrow R-R 3-form = Ω -background

Derivation from D3 side (the deformed spacetime action) Extension to the case of $\mathcal{N}=4$ (and $\mathcal{N}=2^*$ etc.)

2. Deformation in $\mathcal{N} = 2$ Super Yang-Mills

Procedure:

- Consider (fractional) D3-brane in type IIB on $\mathbb{R}^2 \times \mathbb{R}^4/\mathbb{Z}_2$. We forget about \mathbb{Z}_2 -orbifolding for a moment ($\Rightarrow \mathcal{N} = 4$).
- Calculate the disk amplitude with/without the insertion of the vertex operator for R-R 3-form $\mathcal{F}^{\mu\nu a}$.

$$V_{\mathcal{F}}(z,\bar{z}) = (2\pi\alpha') \,\mathcal{F}^{\mu\nu a}(\sigma_{\mu\nu})^{\alpha\beta} (\Sigma_a)^{AB} \\ \times \left[S_{\alpha}(z) S_A(z) e^{-\frac{1}{2}\phi(z)} S_{\beta}(\bar{z}) S_B(\bar{z}) e^{-\frac{1}{2}\phi(\bar{z})} \right]$$

 $\mu, \nu = 1, \dots, 4$: 4D indices, $A, B = 1, \dots, 4$: $SU(4)_R$ indices, $a, b = 5, \dots, 10$: transverse 6D indices ($SO(6)_R$). • $\mathcal{N} = 4$ deformation term ($C^{\mu\nu a} \propto (2\pi\alpha')^{1/2} \mathcal{F}^{\mu\nu a}$ kept finite)

$$\mathcal{L}_{C} = \operatorname{Tr}\left[g\mathbf{C}^{\mu\nu a}\left(i\varphi_{a}F_{\mu\nu}-\frac{1}{2}(\bar{\Sigma}_{a})_{AB}\Lambda^{A}\sigma_{\mu\nu}\Lambda^{B}\right)+\frac{g^{2}}{2}\mathbf{C}^{\mu\nu a}\mathbf{C}_{\mu\nu}{}^{b}\varphi_{a}\varphi_{b}\right].$$

• orbifolding

$$\mathcal{N} = 4$$
: type IIB on $\mathbf{R}^4 \times \mathbf{R}^6 \Rightarrow$
 $\mathcal{N} = 2$: type IIB on $\mathbf{R}^4 \times \mathbf{R}^2 \times \mathbf{R}^4 / \mathbf{Z}_2$

projection of the fields

$$\Lambda_{\alpha}^{A} = 0 \text{ for } A = 3, 4, \quad \varphi_{a}, \ C^{\mu\nu a} = 0 \text{ for } a = 7, \dots, 10.$$

Under this reduction, $\mathcal{L}_{\mathcal{N}=4}$ becomes $\mathcal{L}_{\mathcal{N}=2}$. $(A \rightarrow I = 1, 2)$

$$\mathcal{L}_{\mathcal{N}=2} = \operatorname{Tr} \left[-\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - i\Lambda^{I\alpha} (\sigma^{\mu})_{\alpha\dot{\beta}} D_{\mu} \bar{\Lambda}_{I}^{\dot{\beta}} - D_{\mu} \varphi D^{\mu} \bar{\varphi} \right. \\ \left. -\frac{i}{\sqrt{2}} g \Lambda^{I} [\bar{\varphi}, \Lambda_{I}] + \frac{i}{\sqrt{2}} g \bar{\Lambda}_{I} [\varphi, \bar{\Lambda}^{I}] - \frac{1}{2} g^{2} [\varphi, \bar{\varphi}]^{2} \right].$$

 $\mathcal{N} = 2$ deformation term ([Billo-Frau-Fucito-Lerda] for $\bar{C} = 0$)

$$\mathcal{L}_{C} = \operatorname{Tr}\left[ig(\mathbf{C}^{\mu\nu}\bar{\varphi} + \bar{\mathbf{C}}^{\mu\nu}\varphi)F_{\mu\nu} + \frac{i}{\sqrt{2}}g\bar{\mathbf{C}}^{\mu\nu}\Lambda^{I}\sigma_{\mu\nu}\Lambda_{I} + \frac{g^{2}}{2}(\mathbf{C}^{\mu\nu}\bar{\varphi} + \bar{\mathbf{C}}^{\mu\nu}\varphi)^{2}\right]$$

Here $C^{\mu\nu}$ and $\bar{C}^{\mu\nu}$ are defined by

$$C^{\mu\nu} = -\frac{i}{\sqrt{2}}(C^{\mu\nu5} + iC^{\mu\nu6}), \quad \bar{C}^{\mu\nu} = \frac{i}{\sqrt{2}}(C^{\mu\nu5} - iC^{\mu\nu6}).$$

3. Instanton Solution of Deformed $\mathcal{N} = 2$ Super Yang-Mills

• gauge field part

$$\mathcal{L}_{\rm E} = \operatorname{Tr}\left[\frac{1}{2}(F_{\mu\nu}^{-})^{2}\right] + \cdots$$
$$= \operatorname{Tr}\left[\frac{1}{2}(F_{\mu\nu}^{+} - ig(C^{\mu\nu}\bar{\varphi} + \bar{C}^{\mu\nu}\varphi))^{2}\right] + \cdots,$$

where $F_{\mu\nu}^{\pm} = \frac{1}{2}(F_{\mu\nu} \pm \frac{1}{2}\epsilon_{\mu\nu\rho\sigma}F^{\rho\sigma})$. This means that the (anti-)self-dual equations are

$$F^{-}_{\mu\nu} = 0 \quad \text{for self-dual case,}$$
$$F^{+}_{\mu\nu} - ig(C^{\mu\nu}\bar{\varphi} + \bar{C}^{\mu\nu}\varphi) = 0 \quad \text{for anti-self-dual case.}$$

7

• weak coupling expansion for self-dual case

$$A_{\mu} = g^{-1}A_{\mu}^{(0)} + g^{1}A_{\mu}^{(1)} + \cdots, \quad F_{\mu\nu} = g^{-1}F_{\mu\nu}^{(0)} + g^{1}F_{\mu\nu}^{(1)} + \cdots,$$

$$\Lambda^{I} = g^{-\frac{1}{2}}\Lambda^{(0)I} + g^{\frac{3}{2}}\Lambda^{(1)I} + \cdots, \quad \bar{\Lambda}_{I} = g^{\frac{1}{2}}\bar{\Lambda}_{I}^{(0)} + g^{\frac{5}{2}}\bar{\Lambda}_{I}^{(1)} + \cdots,$$

$$\varphi = g^{0}\varphi^{(0)} + g^{2}\varphi^{(1)} + \cdots, \quad \bar{\varphi} = g^{0}\bar{\varphi}^{(0)} + g^{2}\bar{\varphi}^{(1)} + \cdots.$$

From this expansion, we obtain the self-dual instanton equation from the equation of motion.

• self-dual equation for leading-order fields ($\bar{\Lambda}_{I}^{(0)}$ is subleading.)

$$F_{\mu\nu}^{(0)-} = 0, \quad (\bar{\sigma}^{\mu})^{\dot{\alpha}\beta} D_{\mu} \Lambda_{\beta}^{(0)I} = 0,$$

$$D^{2} \varphi^{(0)} + i \sqrt{2} \Lambda^{(0)I} \Lambda_{I}^{(0)} + i C^{\mu\nu} F_{\mu\nu}^{(0)} = 0,$$

$$D^{2} \bar{\varphi}^{(0)} + i \bar{C}^{\mu\nu} F_{\mu\nu}^{(0)} = 0.$$

• brief review on ADHM construction

1.
$$\Delta_{\dot{\alpha}} = a_{\dot{\alpha}} + b^{\alpha} \sigma_{\mu\alpha\dot{\alpha}} x^{\mu}$$
: $(N+2k) \times 2k$ matrix

ADHM constraint

 $\bar{\Delta}^{\dot{lpha}} \Delta_{\dot{eta}} = f^{-1} \delta^{\dot{lpha}}{}_{\dot{eta}} \;, \quad f: \; x^{\mu} \text{-dependent} \; k imes k \; \text{matrix.}$

canonical form of $\Delta_{\dot\alpha}$

$$\Delta_{(u+i\alpha),j\dot{\alpha}} = \begin{pmatrix} w_{uj\dot{\alpha}} \\ (a'_{ij} + \delta_{ij}x)_{\alpha\dot{\alpha}} \end{pmatrix} \longrightarrow \begin{cases} (\vec{\tau})^{\dot{\alpha}}{}_{\dot{\beta}}(\bar{w}^{\dot{\beta}}w_{\dot{\alpha}} + \bar{a}'^{\dot{\beta}\alpha}a'_{\alpha\dot{\alpha}}) = 0, \\ a'_{\mu} = \bar{a}'_{\mu}. \end{cases}$$

2. $U: (N+2k) \times N$ matrix, zero-mode of $\overline{\Delta}$, i.e. $\overline{\Delta}U = 0$. self-dual gauge field

$$A^{(0)}_{\mu} = -i\bar{U}\partial_{\mu}U \implies F^{(0)}_{\mu\nu} = -4i\bar{U}b^{\alpha}(\sigma_{\mu\nu})_{\alpha}{}^{\beta}f\bar{b}_{\beta}U : \text{ self-dual.}$$

• fermionic part

ansatz
$$(\mathcal{M}^{I}: \text{constant } (N+2k) \times k \text{ matrix})$$

 $\Lambda_{\alpha}^{(0)I} = \bar{U}(\mathcal{M}^{I}f\bar{b}_{\alpha} - b_{\alpha}f\bar{\mathcal{M}}^{I})U,$
 $\Rightarrow \bar{\sigma}^{\mu\dot{\alpha}\alpha}D_{\mu}\Lambda_{\alpha}^{(0)I} = \bar{U}b^{\alpha}f(\bar{\Delta}^{\dot{\alpha}}\mathcal{M}^{I} + \bar{\mathcal{M}}^{I}\Delta^{\dot{\alpha}})f\bar{b}_{\alpha}U = 0.$

fermionic ADHM constraint

$$\bar{\Delta}^{\dot{\alpha}}\mathcal{M}^I + \bar{\mathcal{M}}^I \Delta^{\dot{\alpha}} = 0.$$

canonical form

$$\mathcal{M}^{I}_{(u+i\alpha),j} = \begin{pmatrix} \mu^{I}_{uj} \\ (\mathcal{M}^{\prime I}_{\alpha})_{ij} \end{pmatrix} \longrightarrow \begin{cases} \bar{\mu}^{I} w_{\dot{\alpha}} + \bar{w}_{\dot{\alpha}} \mu^{I} + [\mathcal{M}^{\prime \alpha I}, a^{\prime}_{\alpha \dot{\alpha}}] = 0, \\ \mathcal{M}^{\prime I}_{\alpha} = \bar{\mathcal{M}}^{\prime I}_{\alpha}. \end{cases}$$

• solution of leading-order self-dual equation from ADHM

$$\begin{aligned} A^{(0)}_{\mu} &= -i\bar{U}\partial_{\mu}U, \quad \Lambda^{(0)I}_{\alpha} = \bar{U}(\mathcal{M}^{I}f\bar{b}_{\alpha} - b_{\alpha}f\bar{\mathcal{M}}^{I})U, \\ \varphi^{(0)} &= i\frac{\sqrt{2}}{4}\epsilon_{IJ}\bar{U}\mathcal{M}^{I}f\bar{\mathcal{M}}^{J}U + \bar{U}\begin{pmatrix}\phi & 0\\ 0 & \chi\mathbf{1}_{2}+\mathbf{1}_{k}\mathbf{C}\end{pmatrix}U, \\ \bar{\varphi}^{(0)} &= \bar{U}\begin{pmatrix}\bar{\phi} & 0\\ 0 & \bar{\chi}\mathbf{1}_{2}+\mathbf{1}_{k}\mathbf{\bar{C}}\end{pmatrix}U, \end{aligned}$$

where
$$\phi = \lim_{|x| \to \infty} \varphi^{(0)}$$
, $\bar{\phi} = \lim_{|x| \to \infty} \bar{\varphi}^{(0)}$, and

$$\begin{split} \chi &= \boldsymbol{L}^{-1} \Big(-i \frac{\sqrt{2}}{4} \epsilon_{IJ} \bar{\mathcal{M}}^{I} \mathcal{M}^{J} + \bar{w}^{\dot{\alpha}} \phi w_{\dot{\alpha}} + \boldsymbol{C}^{\mu\nu} [a'_{\mu}, a'_{\nu}] \Big), \\ \bar{\chi} &= \boldsymbol{L}^{-1} \Big(\bar{w}^{\dot{\alpha}} \bar{\phi} w_{\dot{\alpha}} + \bar{\boldsymbol{C}}^{\mu\nu} [a'_{\mu}, a'_{\nu}] \Big), \\ \boldsymbol{L} &= \frac{1}{2} \{ \bar{w}^{\dot{\alpha}} w_{\dot{\alpha}}, * \} + \Big[a'_{\mu}, [a'^{\mu}, *] \Big]. \end{split}$$

<u>comment</u>

1. In the case of $\phi = \bar{\phi} = \bar{C}^{\mu\nu} = 0$, the solution

$$\begin{aligned} A_{\mu} &= A_{\mu}^{(0)}, \\ \Lambda_{\alpha}^{I} &= \Lambda_{\alpha}^{(0)I}, \\ \varphi &= \varphi^{(0)} \Big|_{\phi=0}, \end{aligned} \qquad \bar{\Lambda}_{I\dot{\alpha}} = 0, \\ \bar{\varphi} &= \bar{\varphi}^{(0)} \Big|_{\phi=\bar{C}^{\mu\nu}=0} = 0, \end{aligned}$$

is an exact solution of the equation of motion.

2. In the case of $\bar{C}^{\mu\nu} = 0$, the leading-order solution is reduced to the solution constructed by [Billo et.al.].

4. Instanton Effective Action

• definition

In the instanton background, the action can be evaluated as

$$S_{\rm E} = \frac{8\pi^2}{g^2}k + g^0 S_{\rm eff}^{(0)} + \mathcal{O}(g^2), \quad k: \text{ instanton number.}$$

This $S_{\text{eff}}^{(0)}$ is called the instanton effective action.

$$S_{\text{eff}}^{(0)} = \int d^4 x \operatorname{Tr} \left[\left(D_{\mu} \bar{\varphi}^{(0)} \right) D^{\mu} \varphi^{(0)} + \frac{i}{\sqrt{2}} \Lambda^{(0)\alpha I} \left[\bar{\varphi}^{(0)}, \Lambda^{(0)}_{\alpha I} \right] - i \left(C^{\mu\nu} \bar{\varphi}^{(0)} + \bar{C}^{\mu\nu} \varphi^{(0)} \right) F_{\mu\nu}^{(0)} - \frac{i}{\sqrt{2}} \bar{C}^{\mu\nu} \Lambda^{(0)I} \sigma_{\mu\nu} \Lambda^{(0)}_{I} \right].$$

• instanton effective action in terms of ADHM moduli

$$S_{\text{eff}}^{(0)} = 4\pi^2 \text{tr}_k \left[-i\frac{\sqrt{2}}{4} \epsilon_{IJ} \bar{\mu}^I \bar{\phi} \mu^J + \frac{1}{2} \bar{w}^{\dot{\alpha}} (\bar{\phi} \phi + \phi \bar{\phi}) w_{\dot{\alpha}} - \bar{\chi} L \chi \right. \\ \left. - i\frac{\sqrt{2}}{8} \bar{C}^{\mu\nu} \epsilon_{IJ} \mathcal{M}^{\prime I} \sigma_{\mu\nu} \mathcal{M}^{\prime J} + \frac{1}{4} C^{\mu\nu} \bar{C}_{\mu\nu} \bar{w}^{\dot{\alpha}} w_{\dot{\alpha}} \right].$$

calculation from D(-1) side in D3-D(-1) system [Billo et. al.]

$$S_{\rm str}^{(0)} = 4\pi^2 {\rm tr}_k \left[-i\frac{\sqrt{2}}{4} \epsilon_{IJ} \bar{\mu}^I \bar{\phi} \mu^J + \frac{1}{2} \bar{w}^{\dot{\alpha}} (\bar{\phi} \phi + \phi \bar{\phi}) w_{\dot{\alpha}} - \bar{\chi} L \chi \right. \\ \left. -i\frac{\sqrt{2}}{8} \bar{C}^{\mu\nu} \epsilon_{IJ} \mathcal{M}^{\prime I} \sigma_{\mu\nu} \mathcal{M}^{\prime J} - \frac{1}{4} C^{\mu\nu} \bar{C}_{\mu\nu} a_{\rho}^{\prime} a^{\prime\rho} \right]$$

There is a discrepancy in $C\bar{C}$ -term.

Then we should have additional contribution to the original Lagrangian as

$$\mathcal{L}' = \operatorname{Tr} \left[g^2 C_{\mu\rho} x^{\rho} \bar{C}_{\nu\sigma} x^{\sigma} F^{\mu\lambda} F^{\nu}{}_{\lambda} \right]$$
$$\rightarrow -\pi^2 C^{\mu\nu} \bar{C}_{\mu\nu} \operatorname{tr}_k \left[a'_{\rho} a'^{\rho} + \bar{w}^{\dot{\alpha}} w_{\dot{\alpha}} \right]$$

Since this term depends on x^{μ} explicitly, we cannot calculate it from the disk amplitude of the open string.

<u>comment</u>

- 1. \mathcal{L}' does not contribute to the self-dual equation for leading-order fields. Then the instanton solution is unchanged by \mathcal{L}' .
- 2. $\mathcal{L} + \mathcal{L}'$ basically corresponds to the (truncated version of) super Yang-Mills Lagrangian on the Ω -background.

5. Summary and Outlook

Summary

- 1. We have constructed the (constrained) instanton solution of $\mathcal{N}=2$ super Yang-Mills theory deformed by R-R 3-form.
- 2. We have also calculated the instanton effective action. But in order to compare with the result of the calculation from D(-1) side in D3-D(-1) system, we should have additional contribution.

Outlook

- 1. $\mathcal{N}=4$ (and $\mathcal{N}=2^*$ etc.) case
 - The instanton solution can be obtained in a similar way.
 - The integration over x^{μ} can be performed and we obtain the similar result.
- 2. instanton calculus (integration over ADHM moduli)
 - (deformed) BRST invariance, localization formula
- 3. interpretation of the additional term
 - second-order interaction between D3-branes and R-R 3-form (cf. argument from κ -symmetry of DBI + CS)
- 4. deformation by other R-R fields (other 3-form, 5-form, 1-form)