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[INTRODUCTTON

1. DEVELOPMENTS OF (2+1)-DIM
YANG-MILLS THEORY IN A HAMILTONIAN
APPROACH INITIATED BY

KARABALT AND NAIR (OVER 10 YEARS)

2. WANT TO SAY SOMETHING ABOUT
DECONFINING LIMIT IN THE HAMILTONTAN

APPROACH



INTRODUCTTON

3. CONSIDER THE EUCLIDEAN THOERY ON

REGARD AS TIME DIRECTION
CHOOSE MODULAR PARAMETER
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AND CONSIDER THE LIMIT
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I [INTRODUCTTON

4. CALCULATE THE VEV OF WILSON LOOP
AS IN THE PLANAR CASE AND CONSIDER
A DECONFINING LIMIT IN TERMS OF T,

YWY, = [duldlGs) W, e_SSIXSlXREﬁO‘I’O

SeXS;XR — SyXR°

(2+1) -DIM THEORY AT FINITE TEMP.

W. . Wilsonloopoperator of aloop C
Y, . Vacuum state wave functional
AlG,: gauge—invariant configuration space



7 o MATRIX PARAMETRIZATION

» CALCULATION OF GAUGE INVARTANT
MEASURE

* EVALUATION OF ¥,
 CALCULATION OF (W)

* READING OFF AREA LAW OR POSITIVE
\ STRING TENSION FROM (W) /

IN THE FRAMEWORK OF KARABALI-KIM-NAIR APPROACH




I RESUME OF KKN APPROACH

GAUGE POTENTIAL:

I A=—it"4]  (i=1,22,3) t'€SU(N); Mat Tr(tatb)Z%(Sab
MATRIX PARAMETRIZATION:

AZ:—azM M_l i X z.xz, 7z xi—l—zxz.

A_:MT_la_MT Az:§<A1+1A2): AEZE(A1_ZA2)
i i M, M'eSL(N,C)

(If these are unitary, the potentials are in pure gauge.)

GAUGE TRANSFORMATION:
A—Af=g 'A,g+g 0,g g(x)eSU(N)

[S REALIZED BY Moo 'M, M >M'g




RESUME OF KKN APPROACH

CALCULATION OF GAUGE INVARIANT MEASURE:
dH(C):dU(H)eXP(chSWZW(H))

C=A/G,: gaugeinvariant configuration space
H=M"M I : GAUGE-INVARTANT VARIABLE
Sy (H): SL(N,C)ISU(N)—WZW action
c,: quadratic Casimir of SU(N),c,=N




RESUME OF KKN APPROACH

SWZW(H =LfdzzTr 0.HO.H )

"“err(H '0,H H '0,H H '8, H)

121T

INNER PRODUCT :
<1|2>:fd“(H)QZCASWZW(H)Y/T(H)Y/2<H)

FOR VACUUM: ¥ (H)=1

THIS WAVE FUNCTION CAN BE INTERPRETED AS A
HOLOMORPHIC WAVE FUNCTION OF CHERN-SIMONS

THEORY.




I RESUME OF KKN APPROACH

WILSON LOOP OPERATOR:
I W(C)=Tr P exp|~$ (4,dz+4.dz)|=Tr P exp(?—gs J)

lefzfgﬁii{”i CURRENT OF THE HERMITIAN

| " WZW ACTION
FOR VACUUM STATES AND FOR STRONG COUPLING

LIMIT, THE VEV OF THE WILSON LOOP IN THE
THE FUNDAMENTAL REP. IS EVALUATED AS

(W(C))y ~ exp|—6(Area)c|




RESUME OF KKN APPROACH

(W(C))y ~ exp|—0(Area)]

(Area): the area of the loop C

4 quadratic Casimir for SU(N):
_ & (N—1)(N+1)
O———¢Cc,C —
dqp ATF Cpr= N for fundamental rep.
c,=N for adjoint rep.

SN e N°—1 JLESS THAN 3% DIFFERENCE
O=€\ "o NFROM LATTICE SIMULATIONS

THIS IS ONE OF THE IMPORTANT RESULTS IN THE
KKN APPROACH, WHICH WE SHALL USE LATER.



I MATRIX PARAMETRIZATION

I COMPLEX COORDINATES OF TORUS

z=&,+TE, Igl.:real variables (T=1iT,)
&8,

—&. + integer
HOLONOMIES OF TORUS

&xi W; = Ta2&y;
w,=(dz—dz)2i=—1,d,
w,=(Tdz—Tdz)[2i=T,d §,

&, :cycles corresponding to the periodicity of &;



MATRIX PARAMETRIZATION

INTRODUCE ZERO-MODE VARIABLES OF TORUS
(aeC)

WITH PERTODICITY a—a+m+nT I (m,neZ)

Theintegral part of ‘R =1, canbe absorbed into m.

OUR ASSUMPTION(7;=0) IS EQUIVALENT TO
T; BEING AN INTEGER, A LARGE INTEGER.



MATRIX PARAMETRIZATION

UNDER a—»a+m+nT,

Sa,—(—2it,)n, Sa,—2it,)m

THUS,
exp (¢

mw, d, T, a1>_e—i2nn

)= """, exp($

0(2 T2 T2

0(1 T2 T2

HERE a,,a, TAKE MATRIX-VALUED QUANTITIES DEFINED

WITH a=a t™ | (j=12,..,N—1)

diag = 7.
t* - diagonal generators of SU (N ) gauge group,
— Cartan subalgebra of SU(N)



I MATRIX PARAMETRIZATION

KKN MATRIX PARAMETRIZATION ON TORUS

~ mTw, d
I A;=—0. M M '+M(———)M
T, T,
~ Tmw, a
A =M""0. M'+M" (— )M’
2 2

M (z,z),M"(z,z)arethe elementsof SL(N ,¢).
GAUGE TRANSFORMATIONS ARE REALIZED BY

M—ogM, MT-M'g™' I




I MATRIX PARAMETRIZATION

IN TERMS OF (z,z)-COORDINATES:

Y., Y. encode the zeromodes of torus.



GAUGE INVARTANT MEASURE

" PLANAR CASE: du<C>=a’u(H)exp(ZcASWmH))\

H=M"M I:GAUGE—INVARIANT VARIABLE

Syw(H): SLI(N,C)ISU(N)—WZW action
c,: quadratic Casimir of SU(N),c,=N
\C =A/G,: gaugeinvariant configuration space /

'TORIC CASE: d u(C)=d u(f 1) exp(2¢,S,,, (H)) :




VACUUM-STATE WAVE FUNCTIONAL

KKN PLANAR CASE:

I Y| 4 ]Ze_zexp[kSWZW(MT)]

THIS CORRESPONDS TO (ANTI) HOLOMORPHIC WAVE
FUNCTIONALS OF CHERN-STMONS THEORY.

k. Level number of the Chern— Simons theory

K=—% fz Tr(A.A,) : K d hler potential for

the phase space of CS theory (with A,=0 gauge)



VACUUM-STATE WAVE FUNCTIONAL

S, (M) ARISES FROM THE FLATNESS CONDITION

F..=0,4.—0.A4,+[A4,, A.]=0
ACTED ON THE HOLOMORPHIC WAVE FUNCTION.

THE FLATNESS CONDITION IS REQUIRED AS
AN EQN. OF MOTION FOR A4,.

(OR THE GAUSS LAW CONSTRAINT OF CS THEORY)



VACUUM-STATE WAVE FUNCTIONAL

4 )
NARASHIMHAN-SEHSADRT THEOREM:

THERE EXIST CURVATURE-FLAT CONNECTIONS FOR
ANY COMPACT 2-DIM SPACES WITH COMPLEX STRUCTURE.

\ /

|

[WE CAN CONSTRUCT A VACUUM WAVE FUNCTIONAL j

FOR THE TORIC THEORY IN THE SAME WAY.

K

~/

\[/[;12]23 ’ eXp<kSWZW<MT))Y<a>




VACUUM-STATE WAVE FUNCTIONAL

Y (a): function of Cartan subalgebra valued a on torus

Y (a): complex conjugateof Y (a)

k - toric version of the level number k
k=-K Tr(4.4.)

1T Y 2=5'%X5"

INNER PRODUCTS: |




//WE ASSUME £—0 AS WELL FOR THE TORIC CASE
BUT (FROM A GAUGE INV. ARGUMENT) % CAN BE
RELATED TO ZERO-MODE LEVEL NUMBER FOR U (1)
CHERN-SIMONS THEORY.

50 FOR NON-TRIVIAL ZERO-MODE CONTRIBUTIONS,
WE WILL HAVE NONTRIVIAL £ .

MASS DIMENSION 21 1,

T,€
THE FACTOR OF 7 COMES FROM MATRIX PARAMETRIZATION.



DECONFINING LIMIT

THE VEV OF WILSON LOOP OPERATOR
(W (C))= [ du(H)e 5" SHY (@)Y (a) W (C)

W(C)=Tr P exp(—§ (/Ldz—l—flzdz))zTr P exp(?§ j)
C 4

~/

r
J=-20_H H
T
S(H) :CONTRIBUTION FROM POTENTIAL ENERGY
IN A CONTINUUM STRONG COUPLING LIMIT (FOR

MODES OF LOW MOMENTA), WE CAN USE THE RESULT
OF THE PLANAR CASE BY SETTING Y (a)=1.




DECONFINING LIMIT

- (W(C)), ~ exp|—0b(Area).|
WITH STRING TENTION ON TORUS

~/

CA-I-g

4
5 — e
4 1T

Cr

(N—1)(N+1) :QUADRATIC CASIMIR OF SU(N)
2N IN THE FUNDAMENTAL REP.

c,=N :FOR ADJOINT REP.

Crpr—



I DECONFINING LIMIT

NOW FROM A MANIFESTLY GAUGE INVARTANT
EXPRESSTON OF AN INNER PRODUCTS FOR TORIC
THEORY, WHICH WE HAVE NOT DISCUSSED HERE,

VEFIND o,

WHERE k., 1S THE LEVEL NUMBER FOR THE
ABELIAN CS THEORY ON TORUS. (k,,€27Z)

SO WE CAN SUBSTITUTE
21k
=V (k =21, 1=1,2,...)

2 <aa

=

T,€

INTO O.



DECONFINING LIMIT

IDENTIFYING ; WITH » AND CHOOSING n=1,

I WE HAVE VANISHING STRING TENTION AT (1) _€N

T2/C 21T

THEN WE HAVE A DECONFINEMENT TEMPERATURE:

NOTE:

.=

e’ N
21T

T

HE CHOI
P

1YSICA

N
A MATHEMATICAL REASON FOR »=1 15 ALSO LACKING.

GLECT |

CEk OF n=1 FOR 7', IS NOT CL
)Y WE WOULD REACH 7', FROM

NG n>1 18 NOT

" PHYSICALY C

EAR: SINCE
LOW TEMP.,

LEAR.




DECONFINING LIMIT

WE CONSIDER THIS IS BECAUSE OF OUR CHOICE
OF TORUS DEFORMATION IN THE BEGINNING.

4 BA B A

ImT

THE VALUE OF Tf=2iy SEEMS TO BE PLAUSIBLE

SINCE THIS IS THE SAME AS A PROPAGATOR MASS
FOR (NON-PERTURBATIVE) GLUONS GIVEN BY KKN.




I DECONFINING LIMIT

NOTE THAT STRING TENTION IN THE PLANAR
I THEORY 1S 4(N2—1)
o = e

8TT

T /2\/ N \/ N?
- — —(.798
Jo Vm\N?=q N2 =1

LATTICE SIMULATIONS FOR THIS VALUE ARE
0.865, 0.903 (LIDDLE & TEPPER) AND 0. 86 (7)
(NARAYANAN & OTHERS) AT N — 0.

(ABOUT 10% AGREEMENT TO THE NUMERICAL DATA)




(2+1) -DIM YANG-MILLS ON PLANE

IN THE KKN HAMILTONIAN APPROACH
\_ /

////f/ﬁXRASHIMHAN—SESHADRI THEOREM

(GAUGE-INVARIANCE OF VACUUM-STATE
INNER PRODUCTS)
e DIMENSTONAL ANALYSIS OF THE
LEVEL NUMBER OF VACUUM STATE WAVE-

| FUNCTION -

[PREDICTION FOR DECONKF INEMENT TEMP.}




