Supersymmetry Breaking and Radius Stabilization by Constant Boundary Superpotentials in a Warped Space

Nobuhito Maru (Kobe U)

8/1/2008 Workshop on QFT & String@YITP

References

- ◆Supersymmetry Breaking by Constant Boundary Superpotentials in Warped Space, N.M., N. Sakai (TWCU) & N. Uekusa (Helsinki), PRD74 (2006) 045017
- ◆Radius Stabilization by Constant Boundary Superpotentials in Warped Space, N.M., N. Sakai & N. Uekusa, PRD75 (2007) 125014
- ◆N.M., N. Sakai & N. Uekusa, in preparation

Plan

- 1)Introduction
- 2 Model of radius stabilization
- 3SUSY breaking spectrum
- 4 Summary

Introduction

Motivations of considering Extra Dimensions:

(Alternative) Solution to the gauge hierarchy problem without SUSY

Large extra dimensions

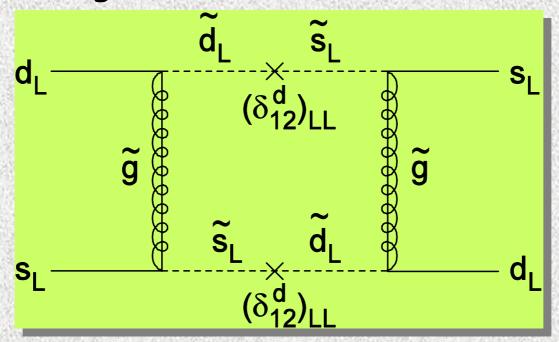
Arkani-Hamed, Dimopoulos & Dvali, PLB429 (1998) 263

Warped extra dimensions

Randall & Sundrum, PRL83 (1999) 3370, 4690

etc

"Alternative Motivation" to consider Extra Dimensions


Solution to SUSY flavor problem

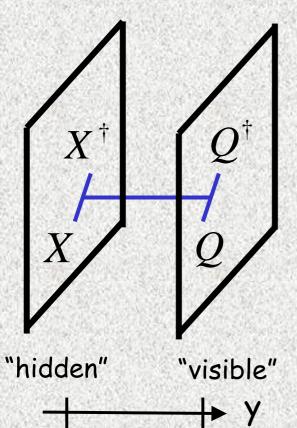
In 4D SUGRA, once SUSY is broken, SUSY breaking is mediated to the visible sector by Planck suppressed contact terms (Gravity mediation)

$$\int d^4\theta c_{ij} \, \frac{X^\dagger X Q_i^\dagger Q_j}{M_4^2} \Rightarrow c_{ij} m_{3/2}^2 \tilde{Q}_i^\dagger \tilde{Q}_j \qquad \text{i,j: flavor index} \\ \text{Q: MSSM superfield} \\ \text{X: hidden sector superfield}$$

 $c_{ij} \neq \delta_{ij}$ in general, No symmetry reason to be flavor diagonal ⇒ SUSY FLAVOR PROBLEM

Ex. $K_0 - \overline{K}_0$ mixing

Off diagonal elements of squark mass matrix for 1st & 2nd generations


$$\left(\delta_{12}^{d}\right)_{LL} \equiv \frac{m_{Q,12}^{2}}{\tilde{m}^{2}} \leq \mathcal{O}\left(10^{-2}\right)$$

1st & 2nd gen. squark mass matrix should be diagonal

Squark mass average

If visible sector & hidden sector are separated in extra dimensional spaces, there is no contact terms by the **LOCALITY** in higher dimensional theory

Randall & Sundrum, NPB557 (1999) 79 Luty & Sundrum, PRD62 (2000) 035008

SUSY breaking spectrum is induced by superconformal anomaly

(ANOMALY MEDIATION)

Randall-Sundrum, NPB557 (1999) 79 Giudice, Luty, Murayama & Rattazzi. JHEP9812 (1998) 027

$$M_{\lambda_{i}} = -\frac{\beta_{i}(g^{2})}{2g_{i}^{2}} m_{3/2},$$

$$\tilde{m}^{2} = -\frac{1}{4} \left[\frac{\partial \gamma}{\partial g} \beta_{g} + \frac{\partial \gamma}{\partial y} \beta_{y} \right] m_{3/2}^{2}$$

(Almost) Flavor blind!!

Not the end of the story ⇒ "RADIUS STABILIZATION"

Phenomenological viable Brane World Scenario = Compactification Radius should be stabilized

From PDG

Limits on Mass of Radion

This section includes limits on mass of radion, usually in context of Randall-Sundrum models. See the "Extra Dimension Review" for discussion of model dependence.

VALUE (GeV) DOCUMENT ID TECN COMMENT

• • We do not use the following data for averages, fits, limits, etc.
 • •

- ABBIENDI 05 use e^+e^- collisions at $\sqrt{s}=91$ GeV and $\sqrt{s}=189$ –209 GeV to place bounds on the radion mass in the RS model. See their Fig. 5 for bounds that depend on the radion-Higgs mixing parameter ξ and on $\Lambda_W = \Lambda_\phi/\sqrt{6}$. No parameter-independent bound is obtained.
- ⁵² MAHANTA 00 obtain bound on radion mass in the RS model. Bound is from Higgs boson search at LEP I.
- ⁵³ MAHANTA 00B uses $p\overline{p}$ collisions at \sqrt{s} = 1.8 TeV; production via gluon-gluon fusion. Authors assume a radion vacuum expectation value of 1 TeV.

Not the end of the story ⇒ "RADIUS STABILIZATION"

Phenomenological viable Brane World Scenario = Compactification Radius should be stabilized

No radion potential in SUSY limit since the radion is a moduli

- ⇒ Size of radius is undetermined
- ⇒ Once SUSY is broken,
 - nontrivial radion potential is generated
- ⇒ Radius is unlikely to be stabilized only by gravity
 - N.M. & N.Okada, hep-ph/0508113
- ⇒ Additional bulk fields should be introduced
- ⇒ New flavor-violating soft SUSY breaking vs Anomaly Mediation

[For stabilization by classical SUSY background, see N.M. & Okada, PRD70 025002 (2004), Eto, N.M., Sakai, PRD70 086002 (2004)]

What we have done

We constructed
a (probably) Simplest Model of
Radius Stabilization
with Anomaly Mediation dominated

Model of Radius Stabilization

5D SUSY model of a massive hypermultiplet on the Randall-Sundrum background

$$ds^{2} = e^{-2R\sigma} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + R^{2} dy^{2}, \ \sigma(y) = k |y|, \ 0 \le y \le \pi$$

Marti & Pomarol, PRD64 (2001) 105025

$$\mathcal{L}_{5} = \int d^{4}\theta \frac{1}{2} \varphi^{\dagger} \varphi \left(T + T^{\dagger} \right) e^{-\left(T + T^{\dagger} \right) \sigma} \left(\Phi^{\dagger} \Phi + \Phi^{c} \Phi^{c \dagger} - 6M_{5}^{3} \right)$$

$$+ \int d^{2}\theta \left[\varphi^{3} e^{-3T\sigma} \left\{ \Phi^{c} \left[\partial_{y} - \left(\frac{3}{2} - c \right) T \sigma' \right] \Phi + 2M_{5}^{3} w_{0} \delta(y) \right\} + h.c. \right]$$

$$Constant$$

$$\varphi = 1 + \theta^2 F_{\varphi}, \quad T = R + \theta^2 F_T \quad \text{Bulk mas}$$

Constant superpotential@y=0

Compensator multiplet (Auxiliary multiplet)

Radion multiplet

 $\Phi^{(c)}$ even (odd)

Background solution (leading order of wo(<<1))

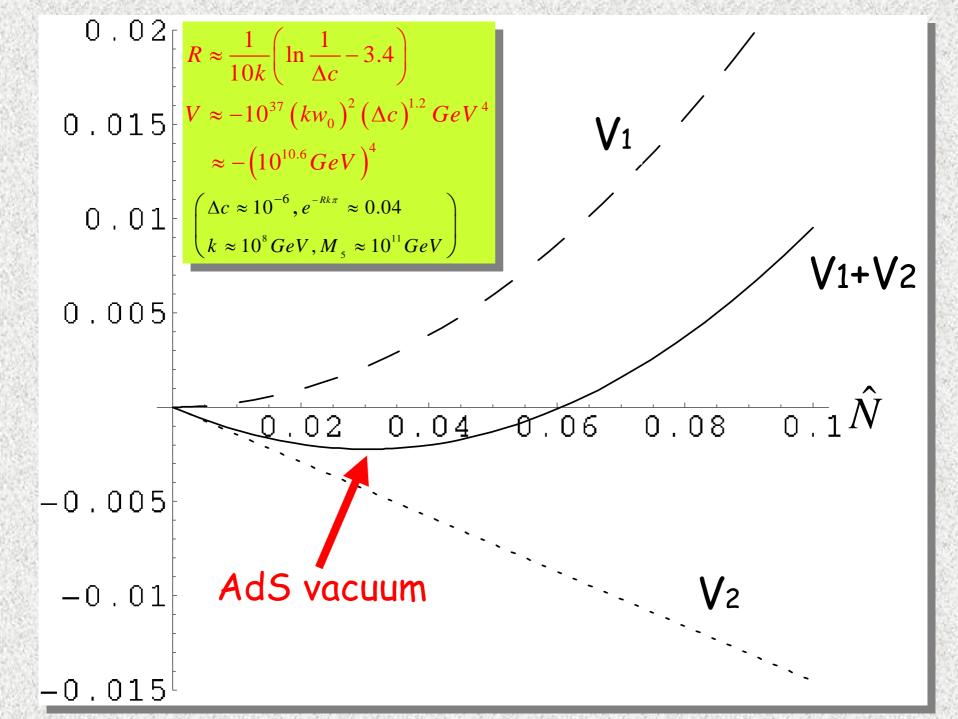
$$\phi(y) = N_2 \exp\left[\left(\frac{3}{2} - c\right)Rk|y|\right]$$

$$\phi^{c}(y) = \hat{\varepsilon}(y) w_{0} \left(\frac{|\phi|^{2}}{6M_{5}^{3}} - 1\right)^{-1} \left(\frac{|\phi|^{2}}{6M_{5}^{3}}\right)^{\frac{5/2 - c}{3 - 2c}} c_{1} c_{1} + c_{2} \left(\frac{|\phi|^{2}}{6M_{5}^{3}}\right)^{-\frac{1 - 2c}{3 - 2c}} \left(\frac{|\phi|^{2}}{6M_{5}^{3}} + \frac{2}{1 - 2c}\right) \left(c \neq \frac{1}{2}, \frac{3}{2}\right)$$

$$\begin{split} \hat{\varepsilon}(y) &\equiv +1 \big(0 < y < \pi\big), -1 \big(-\pi < y < 0\big), \quad \hat{N} \equiv \left|N_2\right|^2 / 6M_5^3 \\ c_1 &= -\bigg(\frac{N_2^\dagger}{2\hat{N}^{(5-2c)/2(3-2c)}}\bigg) \frac{\big(1-2c\big)\hat{N}e^{2Rk\pi} + 2e^{-(1-2c)Rk\pi}}{\big(1-2c\big)\hat{N}\big(e^{2Rk\pi} - 1\big) + 2\Big(e^{-(1-2c)Rk\pi} - 1\Big)}, c_2 = \bigg(\frac{N_2^\dagger}{2\hat{N}^{(3+2c)/2(3-2c)}}\bigg) \frac{\big(1-2c\big)}{\big(1-2c\big)\hat{N}\big(e^{2Rk\pi} - 1\big) + 2\Big(e^{-(1-2c)Rk\pi} - 1\big)} \end{split}$$

Wo = 0 case ⇒ SUSY solution (solution of F-flatness)

3 parameters (N₂, c₁, c₂) are integration constants 2 of them (c₁, c₂) are fixed by boundary conditions @ y=0, π 1 of them (N₂) is fixed by the minimization of the potential


Potential

$$V = \frac{3M_5^3 k w_0^2}{2} \left[\frac{-2(1-2c)}{(1-2c)(e^{2Rk\pi}-1)\hat{N} + 2(e^{(2c-1)Rk\pi}-1)} \hat{N}^{4-2c-\frac{1}{3-2c}} + \frac{\hat{N}}{1-\hat{N}} \left(-4c^2 + 12c - 6 + \frac{3-2c}{3(1-\hat{N})} \right) \right]$$

$$\approx \frac{3M_5^3 k w_0^2}{2} \left[\underbrace{\frac{2(2c_{cr}-1)}{3-2c_{cr}} \hat{N}^{\left(4c_{cr}^2-12c_{cr}+10\right)/\left(3-2c_{cr}\right)}}_{\mathbf{V}_1} - \underbrace{\hat{N}\left(-8c_{cr} + \frac{34}{3}\right)\Delta c}_{\mathbf{V}_2} \right]$$

$$\left(c = c_{cr} - \Delta c, |\Delta c| \ll 1, \hat{N} = e^{-(3-2c)Rk\pi}\right)$$

We found a potential minimum with $\partial V/\partial R = \partial V/\partial \hat{N} = 0$ for $c < c_{cr} \equiv \frac{17 - \sqrt{109}}{12} \approx 0.546$

Radion & Moduli Masses

$$m_{light}^2 \approx k^2 w_0^2 0.38 (3.4 + \ln \Delta c)^2 \Delta c^{1.7}$$
 $m_{heavy}^2 \approx k^2 w_0^2 0.47 \Delta c^{0.7}$
Almost radion
Almost N_{2R},

N2I has a same mass

We obtain for $kw_0 \sim 10^7 \text{GeV} \& \Delta c \sim 10^{-6}$

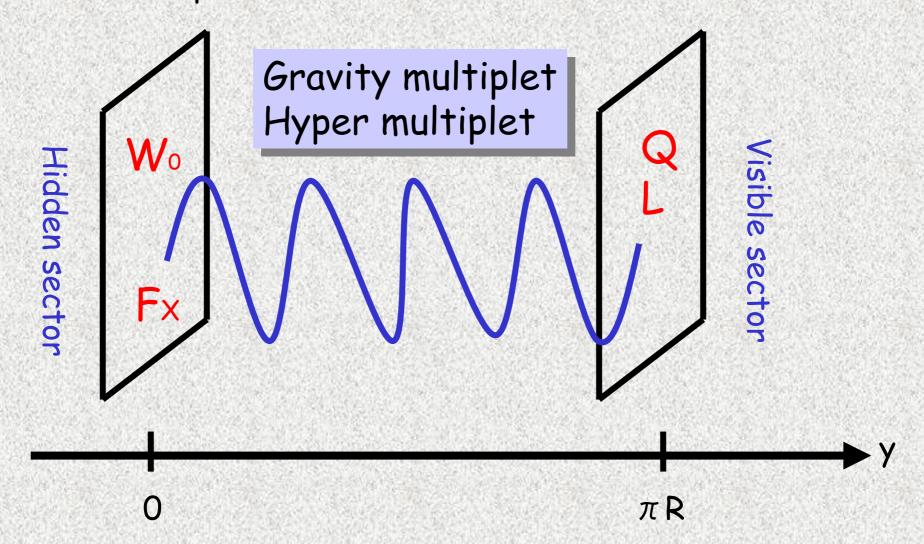
Radion

Canceling Cosmological Constant

The radion potential has a negative vacuum energy $(\sim - (10^10 \text{ GeV})^4)$

⇒ should be canceled by some positive energy

F-term cancellation


We add a SUSY breaking chiral multiplet "X"@y=0

$$\mathcal{L}_{X} = \delta(y) \Big[\int d^{4}\theta \varphi^{\dagger} \varphi X^{\dagger} X + \int d^{2}\theta \Big(\varphi^{3} m^{2} X + h.c. \Big) \Big]$$
$$\rightarrow \Delta V = |F_{X}|^{2} = m^{4} \Rightarrow \sqrt{F_{X}} \approx 10^{10} \, \text{GeV}$$

SUSY Breaking Spectrum

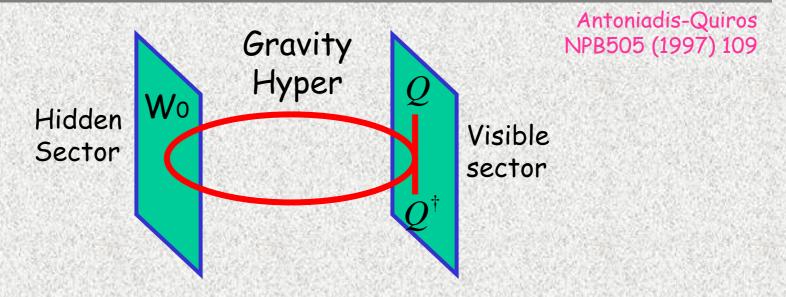
SUSY breaking transmission to our world

SUSY breaking and Our world are assumed to be separated in the direction of 5th dimension

Anomaly Mediation

In this setup, NO GRAVITY MEDIATION@tree level, and we get anomaly mediated SUSY breaking spectrum We would like to make this SUSY breaking effects dominant because of flavor-blindness

Gaugino, Sfermion masses

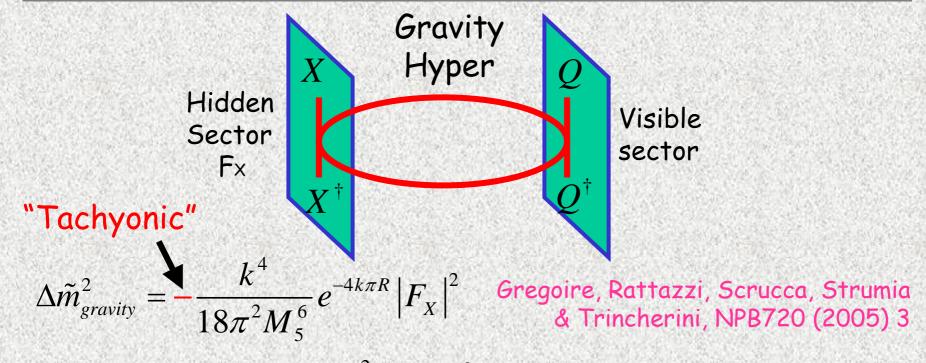

Luty, PRL89 (2002) 141801

$$\tilde{m}_{AMSB} \sim \frac{g^2}{16\pi^2} \left\langle \frac{F_{\omega}}{\omega} \right\rangle \Big|_{y=\pi} \sim 10^{-4} g^2 kw_0$$

$$\sim 100 GeV \left(g^2 kw_0 \sim 10^6 GeV \right)$$

$$\omega \equiv \varphi e^{-T\sigma}$$

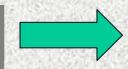
Anomaly mediation v.s. Wo induced sfermion masses@1-loop



- Wo induces mass splitting in gravity & hyper multiplets
- •Sfermion masses are generated by loop effects of all KK
- Biggest mass splitting is gravitino ⇒ M_{3/2} ~ 10⁴ TeV

$$\tilde{m}_{KK} \sim 0.1 \frac{\Delta m^2}{M_p} \le 10^{-5} \, GeV \ll \tilde{m}_{AMSB}$$

Tiny!!


Anomaly mediation v.s. Fx induced sfermion masses@1-loop

$$\Delta \tilde{m}_{hyper}^{2} = \frac{c_{ij}}{16\pi^{2}} \left(\frac{F_{X}}{\sqrt{3}M_{4}}\right)^{2} \left(\frac{k}{M_{4}}\right)^{2} \left(\frac{1-2c}{e^{(1-2c)Rk\pi}-1}\right) e^{(3-2c)Rk\pi}$$
N.M. & Okada, PRD70 (2004) 025002

"Flavor dependent"

$$\Delta \tilde{m}_{gravity}^2, \Delta \tilde{m}_{hyper}^2 \le 10^{-2} \tilde{m}_{AMSB}^2$$
 $\sqrt{F_X} \le 10^{11} GeV$

$$\sqrt{F_X} \le 10^{11} GeV$$

μ-problem

Higgs mass term in MSSM

$$W = \mu H_{u} H_{d}, V \supset B \mu H_{u} H_{d}$$

"Why $\mu^2 \sim B \mu \sim Mw^2 ??$ "

If Higgs is localized on a brane@y=0,

Giudice-Masiero mechanism works Giudice & Masiero (1988)

$$K = \delta(y)\varphi^{\dagger}\varphi \left[\left(\frac{X^{\dagger}}{M_{4}} + \frac{X^{\dagger}X}{M_{4}^{2}} \right) H_{u}H_{d} + h.c. \right]$$

$$\Rightarrow \mu = \frac{F_{X}}{M_{A}} \approx 100 GeV, B\mu = \left(\frac{F_{X}}{M_{A}} \right)^{2}$$

Point: $F_{\times} \sim (10^{10} \text{ GeV})^2$ for cancellation of CC Same order of SUSY breaking scale in Gravity mediation

Canceling CC & Solving μ -problem can be done simultaneously

Summary

- We have presented a simple model of radius stabilization & SUSY breaking in SUSY RS model with a massive hypermultiplet & a constant W@y=0
- Radius & the moduli are shown to be stabilized
 - ⇒ mradion ~ 1 TeV, mmoduli ~ 100 TeV
- ◆SUSY breaking is dominated by anomaly mediation

 ⇒ No SUSY flavor problem
- ◆Gravitino mass ~ 10⁴ TeV
- igspace C. C. cancellation & solving μ -problem can be done by the same localized F-term SUSY breaking