

BERKELEY CENTER FOR THEORETICAL PHYSICS

Updates on particle physics and cosmology

Hitoshi Murayama (IPMU Tokyo, Berkeley) YITP workshop on quantum field and string theories Aug 1, 2008

New intl research institute in Japan

- astrophysics
- particle theory
- particle expt
- mathematics
 official language: English
 >30% non-Japanese
 \$14M/yr for 10 years
 launched Oct 1, 2007
 ≈20 now, ≈40 in fall

- excellent faculyoung and dyn
- will hire about 30 mc scientists
- support visitors!
- new building in 2009
- intl guest house in 20
- wkshp about a mont
- quantum black hole (Sep 12-16)
- sympletic manifoleds (Sep 16-1

BERKELEY CENTER FOR THEORETICAL PHYSICS

Updates on particle physics and cosmology

Hitoshi Murayama (IPMU Tokyo, Berkeley) YITP workshop on quantum field and string theories Aug 1, 2008

BERKELEY CENTER FOR THEORETICAL PHYSICS

What next?

Hitoshi Murayama (IPMU Tokyo, Berkeley) YITP workshop on quantum field and string theories Aug 1, 2008

major shift

BERKELEY CENTER FOR THEORETICAL PHYSICS

- particle physics has been trying to understand matter and forces since 1897
- since 60's, standard model has been verified experimentally. Great achievement of the 20th century physics. (*Higgs needed!*)
- At the same time, we did not see the steps beyond, sense of suffocation
- Now totally changed: data require new physics beyond the standard model!

what we used to do

- Given lack of experimental evidence, we've focused on *aesthetic* reasons why we need physics beyond the standard model
 - hierarchy problem
 - why three generations?
 - masses and mixings?
 - why only one scalar multiplet?
 - why does it condense?
 - anomaly cancellations
 - why SU(3) > SU(2) > U(1)?

New Era

- ~ 900 reached atomic scale 10^{-8} cm $\approx \alpha/m_e$
- ~ 1970 reached strong scal

10⁻¹³cm≈Me^{-2π/αs b0}

- ~2010 will reach weak sca
- known since Fermi (1933)
- presumably it is also a deri fundamental theory
- supersymmetry? extra dim theory?

• If so, we expect rich spectrum of new

Comparge Hadron Collide Foretical PHYSICS (LHC)

Experimental Facts

- Five facts standard model cannot explain
 - finite neutrino mass (1998, 2002)
 - accelerating universe (1998)
 - non-baryonic dark matter (2003)
 - acausal nearly Gaussian scale-invariant density fluctuation (2003)
 - baryon asymmetry (reconfirmed 2003)

BERKELEY CENTER FOR THEORETICAL PHYSICS

Evidence for nonbaryonic dark matter

Energy Budget of the Universe

BERKELEY CENTER FOR THEORETICAL PHYSICS

- Stars and galaxies are only ~0.5%
- v ~0.1–1.5%
- Rest of ordinary matter (e, p & n) 4.4%
- Dark Matter 23%
- Dark Energy 73%
- Anti-Matter 0%
- Higgs ~10⁶²%??

stars neutrinos dark energy baryon dark matter

See the invisible DM through weak lensing

BERKELEY CENTER FOR THEORETICAL PHYSICS

Known Facts about Dark Matter

Cold and Neutral

- By the time of matter-radiation equality and until now, dark matter must be nonrelativistic and clump together by gravitational attraction
- must be electrically neutral

PMU Mass Limits "Uncertainty Principle"

- Clumps to form structure
- imagine $V = G_N \frac{Mm}{r}$ "Bohr radius": $r_B = \frac{\hbar^2}{G_N Mm^2}$
- too small $m \Rightarrow$ won't "fit" in a galaxy!
- m >10⁻²² eV "uncertainty principle" bound (modified from Hu, Barkana, Gruzinov, astro-ph/0003365)

Dim Stars?

BERKELEY CENTER FOR THEORETICAL PHYSICS

Not enough of them!

- MACHO exclu
- Can't make pri normal smooth

• there can't be any ching violent

maximum mass of PBH is horizon mass@BBN $M_{
m horizon} pprox g_*T^4$

$$\left(\frac{M_{Pl}}{M_{*}^{1/2}T^{2}}\right)^{3} \approx 10^{5} M_{\odot}$$

$$\left(\frac{\mathrm{MeV}}{T}\right)$$

 $\mathbf{2}$

• And $m < 40M_{\odot}$ from wide binaries

(Yoo, Chaname, Gould, astro-h/0307437)

MU Summary Mass Limits

BERKELEY CENTER FOR THEORETICAL PHYSICS

- 10⁻³¹ GeV to 10⁵⁰ GeV
- narrowed it down to within 81 orders of magnitude
- a big progress in 70 years since Zwicky

Self-Couplin

- if self-coupling too big, will "smooth out" cuspy profile at the galactic center
- some people wanted it (Spergel and Steinhardt, astro-ph/9909386)
- need core < 35 kpc/h from data σ < 1.7 x 10⁻²⁵ cm² (m/GeV)
 - (Yoshida, Springel, White, astro-ph/ 0006134)
- bullet cluster:

 $\sigma < 1.7 \times 10^{-24} \text{ cm}^2 \text{ (m/GeV)}$ (Markevitch et al, astro-ph/0309303)

 $\mathbf{S1}$

1:0.82:0.65

S1Wa

 $\sigma^{\star} = 0.1 \,\mathrm{cm}^2 \mathrm{g}^{-1}$ $r_{\mathrm{c}} = 40 \, h^{-1} \mathrm{kpc}$ 1 : 0.88 : 0.66

Lifetime

- At least of the order of age of the universe I4Gyr
- Beyond that, it depends on decay modes, branching fractions, all model-dependent

MACHO => WIMP^{BERKELEY CENTER FOR}HEORETICAL PHYSICS

- It is probably WIMP (Weakly Interacting Massive Particle)
- Stable heavy particle produced in early Universe, left-over from near-complete annihilation
- Will focus on WIMPs for the rest or the talk

WIMP paradigm

THEORETICAL PHYSICS

thermal relic

- thermal equilibrium when $T>m_{\chi}$
- Once $T \le m_{\chi}$, no more χ created
- if stable, only way to lose them is annihilation
- but universe expands and χ get dilute
- at some point they can't find each other
- their number in comoving volume "frozen"

THEORETICAL PHYSICS

- WIMP freezes out when the annihilation rate drops below the expansion rate
- Yield Y=n/s constant under expansion
- stronger annihilation \Rightarrow less abundance

Freeze-out $H \approx g_*^{1/2} \frac{T^2}{M_{Pl}}$ $\Gamma_{\rm ann} \approx \langle \sigma_{\rm ann} v \rangle n$ $H(T_f) = \Gamma_{\text{ann}}$ $n \approx g_*^{1/2} \frac{T_f^2}{M_{Pl} \langle \sigma_{\rm ann} v \rangle}$ $s \approx g_* T^3$ $Y = \frac{n}{s} \approx g_*^{-1/2} \frac{1}{M_{Pl}T_f \langle \sigma_{\rm ann} v \rangle}$ $\Omega_{\chi} = \frac{m_{\chi} Y s_0}{\rho_c}$ $\approx g_*^{-1/2} \frac{x_f}{M_{Pl}^3 \langle \sigma_{\rm ann} v \rangle} \frac{s_0}{H_0^2}$

Order of magnitude

• "Known" Ω_{χ} =0.23 determines the WIMP annihilation cross section

$$\begin{split} \Omega_{\chi} &\approx g_{*}^{-1/2} \frac{x_{f}}{M_{Pl}^{3} \langle \sigma_{\rm ann} v \rangle} \frac{s_{0}}{H_{0}^{2}} \\ \langle \sigma_{\rm ann} v \rangle &\approx \frac{1.12 \times 10^{-10} \,{\rm GeV}^{-2} x_{f}}{g_{*}^{1/2} \Omega_{\chi} h^{2}} \\ &\sim 10^{-9} \,{\rm GeV}^{-2} \\ \langle \sigma_{\rm ann} v \rangle &\approx \frac{\pi \alpha^{2}}{m_{\chi}^{2}} \end{split}$$

 $m_{\chi} \approx 300 \text{ GeV}$

 simple estimate of the annihilation cross section

• weak-scale mass!!!

BERKELEY CENTER FOR THEORETICAL PHYSICS

WIMP

- A stable particle at the weak scale with "EMstrength" coupling naturally gives the correct abundance
- This is where we expect new particles because of the hierarchy problem!
- Many candidates of this type: SUSY, little Higgs with T-parity, Universal Extra Dimensinos, etc
- If so, we may even create dark matter at accelerators

Minimal Model

BERKELEY CENTER FOR THEORETICAL PHYSICS

- Dark Matter clearly a new degree of freedom
- The smallest degree of freedom you can add to the QFT is a real Klein-Gordon field S: dof=
- assign odd Z₂ parity to S, everything else even
- Most general renormalizable coupling $L_{S} = \frac{1}{2} \partial_{\mu} S \partial^{\mu} S - \frac{1}{2} m_{S}^{2} S^{2} - \frac{k}{2} |H|^{2} S^{2} - \frac{h}{4!} S^{4}.$ Davoudiasl, Kitano, Li, HM

Consistency check

- correct Dark Matter abundance
- evades direct detection limits
- satisfies triviality/instability limits from RGE
- consistent with precision electroweak data

LSP

BERKELEY CENTER FOR THEORETICAL PHYSICS

- The lightest Supersymmetric Particle is one of the best candidates for dark matter (assuming R-parity conservation)
- In the "Minimal Supergravity" or CMSSM, the LSP is bino-like
- Its annihilation cross section tends to be too small, abundance too large because it is P-wave suppressed $\tilde{B}\tilde{B} \rightarrow e^+e^-$
- Coannihilation region $\tilde{B}\tilde{ au} o \gamma au$
- Funnel region where annihilation goes through a Higgs resonance.

THEORETICAL PHYSICS

KELEY CENTER FOR

Example

 exchange of Majorana fermions with a relative minus sign

$$\mathcal{M}_{+-} = 8g'^2 \frac{M_{\tilde{B}} p_{\tilde{B}}}{M_{\tilde{B}}^2 + m_{\tilde{e}_R}^2} \cos^2 \frac{\theta}{2}$$
$$\mathcal{M}_{-+} = 8g'^2 \frac{M_{\tilde{B}} p_{\tilde{B}}}{M_{\tilde{B}}^2 + m_{\tilde{e}_R}^2} \sin^2 \frac{\theta}{2}$$
$$\mathcal{M}_{++} = 0$$
$$\mathcal{M}_{--} = 0$$

- P-wave annihilation
- Final state J=1
- L=0, S=1 not possible
- L=I, S=I allowed

A little too much Berkeley Center For Theoretical Physics

- You get the right order of magnitude!
- But in detail, a little too much beyond the collider limits
- Coannihilation region

 $\tilde{B}\tilde{\tau}
ightarrow \gamma \tau$

 Funnel region where annihilation goes through a Higgs resonance

 $\tilde{B}\tilde{B} \to A^0, H^0$

sample spectrum BERKELEY CENTER FOR THEORETICAL PHYSICS

 $m_0 = 100, \ m_{1/2} = 250, \ A_0 = -100, \ \tan \beta = 10, \ \mu > 0$

sample spectrum BERKELEY CENTER FOR THEORETICAL PHYSICS

 $m_0 = 1450, m_{1/2} = 300, A_0 = 0, \tan \beta = 10, \mu > 0$

Sample spectrum BERKELEY CENTER FOR THEORETICAL PHYSICS

 $m_0 = 90, \ m_{1/2} = 400, \ A_0 = 0, \ \tan \beta = 10, \ \mu > 0$

BERKELEY CENTER FOR THEORETICAL PHYSICS

PMU Universal Extra Dimensions

- 5D Dirac equation \rightarrow vector-like spectrum $(i\gamma^{\mu}\partial_{\mu} + \gamma_{5}\partial_{y})\psi(x,y) = 0$
- Use orbifold to get a chiral 4/R spectrum in 4D
 3/R
- $R^4 \times S^1/Z_2$ $S^1: y \in [0,2\pi R]$

• BC: $\psi(-y) = -\gamma_5 \psi(y)$

- cuts the spectrum in a half
- as a result, there is a remaining Z₂ symmetry y→π−y

KK parity: $(-1)^n$

Universal Extra Dimensions

- Put all SM particles in the bulk
- Ist KK states m=I/R
- However, radiative corrections split their masses (Cheng, Matchev, Schmaltz, hep-ph/0205314)
- B⁽¹⁾ can be good DM (Servant, Tait, hep-ph/ 0206071)

BERKELEY CEN

THEORETICAL PHYSICS

Many WIMP candidates

- Warped unification + proton stability (Agashe, Servant, he-ph/0403143)

(Cheng, Low, Wang, hep-ph/0510225)

• Many, many, more....

WIMP Searches

Finding Dark Matter

Direct method

BERKELEY CENTER FOR

THEORETICAL PHYSICS

Limit

ZEPLIN-II, 2007 CDMS-II, 2005 XENON10, 2007 CDMS-II, 2008

XMASS

- Trying to detect dark matter directly
- Pls Suzuki and Nakahat lead the project
- adding Kai Martens to the project
- start data taking ~2009

Finding Dark Matter

Indirect method Icecube, Antares, Nestor, Nemo, Baikal

Other possibilities

 Given that dark matter is supposed to be in the halo of the galaxy, WIMPs annihilation may lead to signals in gammas, positrons, anti-protons, neutrinos

 look for them from the galactic center, the entire halo, substructures in the halo

GLAST June 11, 2008 launched

BERKELEY CENTER FOR THEORETICAL PHYSICS

Colliders

Producing Dark Matter FOR Retical Physics • Collision of high-energy particles

- mimic Big Bang
- We hope to create Dark Matter particles in the laboratory
- Look for events where energy and momenta are unbalanced
- "missing energy" E_{miss}
- Something is escaping the detector
- electrically neutral, weakly interacting
- \Rightarrow Dark Matter!?
- need to know the model! \Rightarrow spin & mass meaurements

THEORETICAL PHYSICS

Helicity and phase

- Decay of particle with spin h along the momentum axis
- Rotations about z-axis of decay plane given by $\mathcal{M} \propto e^{i J_z \phi}$

$$J_z = \frac{(\vec{s} + \vec{x} \times \vec{p}) \cdot \vec{p}}{|\vec{p}|}$$
$$= \frac{\vec{s} \cdot \vec{p}}{|\vec{p}|} = h$$

 rotational invariance: a single helicity state has flat distribution in Φ:

$$\left|e^{ih\phi}\right|^2 = 1$$

- Different helicities interfere once they decay!
- ϕ dependence of cross section tells us what helicities contributed to the interference $\sigma \propto \cos(\Delta h \phi)$
- Can measure only helicity differences (akin to neutrino oscillation)

 Applying these rotationally invariant cuts (with looser acceptances at Tevatron: E_T>20GeV, E_T>10GeV, |η|<2.6; BG<5%)

A_1/A_0	0.040 ± 0.023
A_2/A_0	0.082 ± 0.023
A_3/A_0	0.000 ± 0.023
A_4/A_0	0.000 ± 0.024

PMC oncordance mode ReleviceNTER FOR of Dark Matter?

- cosmological measurement of dark matter \Rightarrow abundance \propto (annihilation cross section)⁻¹
- detection experiments
 - \Rightarrow scattering cross section
- production at colliders
 - \Rightarrow mass, couplings
 - \Rightarrow can calculate cross sections
- Will know what Dark Matter is
- Will understand universe back to t~10⁻¹⁰sec

abundance Abunda

Dark Energy

Type-IA Supernovae

- Type-IA Supernovae "standard candles"
- Apparent brightness
 ⇒ how far (time)
- Know redshift
 ⇒ expansion since then
- Expansion of Universe is accelerating

Accelerating Universe

• Einstein's equation $rac{\dot{R}}{R}$ 8π •If the energy dilutes as Universe expands, it must slow down •Need something that gains in energy as Universe stretches i.e, negative pressure • The cosmological constant Λ has the equation of state $w=p/\rho=-1$ Generically called "Dark Energy"

Embarrassment

BERKELEY CENTER FO THEORETICAL PHYSIC

• A naïve estimate of the cosmological constant in Quantum Field Theory:

 $\rho_{\Lambda} \sim M_{Pl}^{4} = G_{N}^{-2} \sim 10^{120}$ times observation

The worst prediction in theoretical physics!

- People had argued that there must be some mechanism to set it zero
- But now it seems finite???

Cosmic Coincidence BERKELEY CENTER FOR Problem

- Why do we see matter and cosmological constant almost equal in amount?
- "Why Now" problem
- Actually a triple coincidence problem including the radiation
- If there is a deep reason for $\rho_{\Lambda} \sim ((\text{TeV})^2/M_{Pl})^4$,

coincidence natural

Arkani-Hamed, Hall, Kolda, HM

Does the Universe end?

- If w<-1, the Universe ends in a Big Rip
- Expansion becomes so fast that galaxies, stars, eventually atoms and even nuclei get ripped apart
- Universe ends with an infinite speed and empty!
- We need to know the equation of state

BERKELEY CENTER

What is Dark Energy?

- We have to measure w
- For example with a dedicated satellite experiment

SNAP or on the ground: DES, BOSS, LSST, etc

Friedland, HM, Perelstein

BERKELEY CENTER FOR

THEORETICAL PHYSICS

HyperSuprim

- New camera at Subaru
- IPMU, NAOJ, KEK, Princeton
- IPMU leads the design (Aihara)
- IPMU leads the analysis team (Takada, Yoshida)
- map out distribution of dark matter
- constrain dark energy properties

Power of Combination

- SDSS and HSC with very different systematics
- give confidence to the result
- How fast is dark energy creating energy?
- Is dark energy "alive"?

string theory prediction?

- Bousso's covariant entropy bound says de Sitter universe has only finite entropy
- how can it be consistent with infinite number of dof in string theory?
- de Sitter must tunnel to Minkowski
- create bubbles
- no dark energy in bubble
- "eternal inflation"?
- need criteria!

Conclusions

- New era
 - reaching the Fermi energy scale (1933)
 - five experimental evidence beyond SM
- Among them, dark matter puzzle may well be within reach in the next 10? years
- many theoretical puzzles with dark energy
- experiments addressing other mysteries
- theorist:
 - find ways to extract as much information as possible from precious data
 - data \Rightarrow models \Rightarrow predictions \Rightarrow data