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1 Introduction

• Check of the predictions of superstring theories

The situation where the effects of quantum gravity become important

⇒ Black holes（singularity）
Early universe（singularity）

It is urgent to see whether and how these problems are resolved and
if superstrings can give realistic models of particles and their interaction
including gravity

Here we consider black holes. ———————————–

• We need dilaton!!

Many studies of black holes have been performed by using low-energy
effective theories inspired by string theories, which typically involve not
only the metric but also the dilaton field (as well as several gauge fields).

There are studies of such solutions in Einstein theories with dilaton.

• What about higher order corrections?

It is known that there are correction terms of higher orders in the curva-
ture to the lowest effective supergravity action coming from superstrings.
The simplest correction is the Gauss-Bonnet (GB) term coupled to the
dilaton field.
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However, black holes in Einstein-GB theories have been studied much
but WITHOUT DILATON!

In order to understand properties of black holes in string theories, we
should include dilaton!
• Another motivation:
Many people consider the application to the calculation of shear vis-

cosity in strongly coupled gauge theories using black hole solutions in
five-dimensional Einstein-GB theory via AdS/CFT correspondence, but
without dilaton. In order to see this in the context of superstrings, we
should again include dilaton.

2 Dilatonic Einstein-GB theory

2.1 Basic equations

The action:

S =
1

2κ2
D

∫
dDx

√
−g

[
R − 1

2
(∂µφ)2 + α2e

−γφR2
GB

]
,

R: the scalar curvature, φ: a dilaton field,
R2

GB = RµνρσR
µνρσ − 4RµνR

µν + R2: the GB combination,
κ2

D = 8πGD: a D-dimensional gravitational constant,
α2 = α′/8: α′ is the Regge slope parameter, γ = 1/2.
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Line element in D-dimensional static spacetime

ds2
D = −

(
k − 2Gm

rD−3

)
e−2δdt2 +

(
k − 2Gm

rD−3

)−1

dr2 + r2hijdxidxj.

where hijdxidxj represents the line element of a (D−2)-dimensional hyper-
surface with constant curvature of signature k and volume Σk for k = ±1, 0.

Master equations:

m̃′D − 2

r̃D−4
h − 1

4
Br̃2φ′2 − 1

2
(D − 1)4 e−γφ(k − B)2

r̃2
+ 2(D − 2)3 γe−γφB(k − B)(φ′′ − γφ′2)

+(D − 2)3 γe−γφφ′(k − B)[(D − 3)k − (D − 1)B]

r̃
= 0 ,

δ′(D − 2)r̃h +
1

2
r̃2φ′2 − 2(D − 2)3 γe−γφ(k − B)(φ′′ − γφ′2) = 0 ,

(e−δr̃D−2Bφ′)′ = γ(D − 2)3e
−γφ−δr̃D−4

[
(D − 4)5

(k − B)2

r̃2
+ 2(B′ − 2δ′B)B′

−4(k − B)BU(r) − 4
D − 4

r̃
(B′ − δ′B)(k − B)

]
,
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where we have defined

r̃ ≡ r
√

α2
, m̃ ≡ Gm

α
(D−3)/2
2

, B ≡ k − 2m̃

r̃D−3
,

h ≡ 1 + 2(D − 3)e−γφ
[
(D − 4)

k − B

r̃2
+ γφ′3B − k

r̃

]
,

h̃ ≡ 1 + 2(D − 3)e−γφ
[
(D − 4)

k − B

r̃2
+ γφ′2B

r̃

]
,

U(r) ≡ 1

2h̃

[
(D − 3)4

k − B

r̃2B
− 2

D − 3

r̃

(B′

B
− δ′

)
− 1

2
φ′2

+(D − 3)e−γφ

[
(D − 4)6

(k − B)2

r̃4B
− 4(D − 4)5

k − B

r̃3

(B′

B
− δ′ − γφ′

)
−4(D − 4)γ

k − B

r̃2

(
γφ′2 +

D − 2

r̃
φ′ − Φ

)
+ 8

γφ′

r̃

{(B′

2
− δ′B

)(
γφ′ − δ′ +

2

r̃

)
−D − 4

2r̃
B′

}
+ 4(D − 4)

( B′

2B
− δ′

)B′

r̃2
− 4

γ

r̃
Φ(B′ − 2δ′B)

]]
,

Φ ≡ φ′′ +
(B′

B
− δ′ +

D − 2

r̃

)
φ′.

These equations have a symmetry under

φ → φ − φ∞, r̃ → e
1
2γφ∞r̃, δ → δ, m̃ → e

D−3
2 γφ∞m̃.

⇒ the asymptotic value of the dilaton field = 0
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Another shift symmetry

δ → δ − δ∞, t → e−δ∞t,

⇒ the asymptotic value of δ = 0.

2.2 Boundary conditions

1. Asymptotic flatness at spatial infinity (r̃ → ∞):

m̃(r̃) → M̃ < ∞, δ(r̃) → 0, φ(r̃) → 0.

2. The existence of a regular horizon r̃H:

2m̃H = r̃D−3
H , |δH| < ∞, |φH| < ∞.

3. The event horizon is the outermost one and the regularity of spacetime
for r̃ > r̃H:

2m̃(r̃) < r̃D−3, |δ(r̃)| < ∞, |φ(r̃)| < ∞.

Given the b.c. at the horizon, φ′
H is determined:

2Cγ
[
2(D − 3) + (D − 4)(3D − 11)C + (D − 4)C2

{
(D − 4)5 + (D − 2)(3D − 11)γ2

}
+ 2(D − 2)5 C3γ2

]
r̃2
Hφ′2

H

+2
[
(D − 1)2 (D − 4)C2

{
2 + 2C − (D − 4)5 C2

}
γ2 − {1 + (D − 4)C}2 {2(D − 3) + (D − 4)5 C}

]
r̃Hφ′

H

+(D − 1)2 C
[
2(D − 2) − 4(D − 4)C − (D − 4)2(D + 1)C2

]
γ = 0,
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where we have defined

C =
2(D − 3)e−γφH

r̃2
H

.

3 Non-dilatonic black hole solutions

D = 4: the GB term is total divergence and does not give any contribution.

D ≥ 5: the field equations can be integrated to yield

B̄ = 1 − 2m̄

r̃D−3
, δ = 0,

m̄ = r̃D−1

4(D−3)4

[
−1 ±

√
1 + 8(D−3)4M̄

r̃D−1

]
,

M̄ : an integration constant corresponding to the asymptotic value m̄(∞)
for the plus sign.

M̄-r̃H relation for the black hole without the dilaton field:

M̄ =
1

2
r̃D−5
H

[
r̃2
H + (D − 3)4

]
.

Note that M̄ → 0 for D = 4,≥ 6, but not for D = 5 in the limit rH → 0.
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4 D = 4 black hole solutions

Give b. c. on φH and δH at the horizon ⇒ φ′
H =

1±
√

1−24C2γ2

2Cγr̃H
.

Only the smaller solution gives regular BH.
Use the shift symmetry to set the asymptotic value of the dilaton to

zero.
Regular black hole solutions exist only for r̃H ≥ 1.47126.
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Figure 1: Black hole solutions in the four-dimensional Einstein-GB-dilaton system with

γ = 1
2. The behaviours are for four different radii of event horizon: r̃H = rH/

√
α2 = 2.68697

(solid line), 2.90965 (dashed line), 3.19148 (dotted line) and 3.52851 (dash-dotted line).

The right: mass versus horizon radius. The masses M̃ for these cases are found to be

1.47251, 1.53808, 1.65113, and 1.80161, respectively.
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5 D = 5 solutions

Cγ(1 + C + 3C2γ2)r̃2
Hφ′2

H − (1 + C)(1 + C − 6C2γ2)r̃Hφ′
H + 3C(3 − 2C − 3C2)γ = 0.

The discriminant of this equation is (for γ = 1
2) always positive for C > 0

⇒ there is no bound on the value of r̃H for the reality of the solution
⇒ In contrast to the four-dimensional case, the regular black hole solu-
tions exist for all r̃H > 0.
Only the smaller solution gives regular BH.
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Figure 2: Black hole solutions in the five-dimensional Einstein-GB-dilaton system for four

different radii of event horizon: r̃H = rH/
√

α2 = 0.754129 (solid line), 1.13599 (dashed line),

1.46193 (dotted line) and 2.68391 (dash-dotted line). The masses M̃ are 0.573328, 1.05972,

1.66924 and 5.0097, respectively.
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Properties:

Regular black hole solutions exist for all r̃H > 0.

4-dim.: solution disappears below certain radius.

The mass of the dilatonic black holes approaches a non-zero constant
M̃ = 0.288185 as r̃H → 0.

Similar to D = 5 non-dilatonic case: M̄ = 1
2(r̃

2
H + 2) → 1 for r̃H → 0
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Right: The configuration of the dilaton field for the small black holes
with r̃H = rH/

√
α2 = 0.0748464. In the GB region the dilaton decays loga-

rithmically and suddenly changes to the power decay ∼ r−2.
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6 D = 6 solutions

Cγ
[
6 + 14C + 4C2(14γ2 + 1) + 48C3γ2

]
r̃2
Hφ′2

H

+2
[
40C2γ2(1 + C − C2) − (3 + C)(1 + 2C)2

]
r̃Hφ′

H + 40C(2 − 2C − 7C2)γ = 0.

The discriminant of this equation is (for γ = 1
2) always positive for C > 0

⇒ The regular black hole solutions exist for all r̃H > 0.
Only the smaller solution gives regular BH.
The mass of the black hole approaches 0 as r̃H → 0.
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Figure 3: Black hole solutions in the six-dimensional Einstein-GB-dilaton system for four

different radii of the event horizon: r̃H = rH/
√

α2 = 0.125367 (solid line), 1.13596 (dashed

line), 1.46199 (dotted line) and 4.12369 (dash-dotted line). The masses M̃ for these cases

are found to be 0.311672, 2.6993, 4.25081 and 49.2744, respectively.



Black holes in Dilatonic EGB Theory ..., N. Ohta 12

7 D = 10 solutions

Cγ
[
7 + 57C + 6C2(76γ2 + 15) + 1680C3γ2

]
r̃2
Hφ′2

H

+
[
432C2γ2(1 + C − 15C2) − (1 + 6C)2(7 + 15C)

]
r̃Hφ′

H − 72C(−4 + 6C + 99C2)γ = 0.

The discriminant of this equation is (for γ = 1
2) always positive for C > 0

⇒ The regular black hole solutions exist for all r̃H > 0.
Only the smaller solution gives regular BH.
The mass of the black hole approaches 0 as r̃H → 0.
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Figure 4: Black hole solutions in the ten-dimensional Einstein-GB-dilaton system for four

different radii of the event horizon: r̃H = rH/
√

α2 = 0.968549 (solid line), 1.13596 (dashed

line), 1.46194 (dotted line) and 9.68119 (dash-dotted line). The masses M̃ are 16.7172,

36.8633, 129.489 and 5.88035 × 106, respectively.
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Almost the same as those in the D = 6 case qualitatively.
The dilaton field φ monotonically increases for large black holes.

The mass of the black hole approaches zero for r̃H → 0.
This is again in agreement with the non-dilatonic case,

M̄ =
1

2
r̃5
H(r̃2

H + 42).

8 Thermodynamics

Hawking temperature: TH =
e−δH

4πrH

(
D − 3 − 2m̃′

H

r̃D−4
H

)
.
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M̃-β relations
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Figure 5: The mass-temperature diagram, where β ≡ 1/T . The dashed lines are the non-

dilatonic case for comparison.

D = 4: The GB term has the tendency to raise the temperature com-
pared to the non-dilatonic solution (Schwarzschild black hole).

D = 5: Non-dilatonic case
The temperature increases as the mass of the black hole becomes small
for large black holes
⇒ the heat capacity is negative.

Below the mass M̃ = 2.976072, the temperature decreases as the mass
becomes small.

The sign of the heat capacity changes at this mass. · · · Same as the
Reissner-Nordström black hole solution: the second order phase transi-
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tion.
As the black hole becomes small through Hawking radiation, the tem-

perature becomes extremely law, and the solution cannot reach the sin-
gularity with zero horizon radius. This is favorable feature from the point
of view of cosmic censorship hypothesis.

Dilatonic case:
Thermodynamic properties change drastically. The heat capacity is neg-
ative in all the mass range, and the temperature blows up at the singular
solution. This is due to the nontrivial coupling between the dilaton field
and the GB term and the resultant divergence of the dilaton field at the
horizon.

D ≥ 6:
The behavior of the temperature is qualitatively the same as that in the
non-dilatonic case.

The dilaton field has tendency to lower the temperature for the large
black hole, while it raises the temperature for small black hole.

The temperature diverges for the zero mass “solution” and the black
hole continues evaporating.
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In GR, the horizon radius of the black hole is related to entropy by
S = πr2

H.
With GB gravity, entropy is not obtained by a quarter of the area of

the event horizon.

S =
AH

4

[
1 + 2(D − 2)3

α2e
−γφH

r2
H

]
,

where AH is the area of the event horizon.
M-S plots:
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Figure 6: The dashed lines are the non-dilatonic case for comparison.

No qualitative difference between the dilatonic and the non-dilatonic
cases.

The solution disappears at the nonzero finite mass for D = 4 (the dila-
tonic solution) and D = 5.
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Entropy of the dilatonic black hole is always larger than that of the
non-dilatonic black hole with the same mass.

9 Conclusions and discussions

D = 5:
The effects of the GB term is negligible for the large black holes (rH À

`s), and the dilaton field decays with power.
For the small black holes (rH ≤ `s), spacetime is divided into the GR

region and the GB region with a sharp transition.
In the GB region the dilaton field behaves logarithmically and the ef-

fective energy density becomes negative. The regular black hole solutions
exist for all horizon radius. In the zero horizon-radius limit the solution
becomes singular. These properties are same as those of the non-dilatonic
solutions.

D ≥ 6:
For small black holes (rH ¿ `s), the string effect extends just around

their event horizons which are much smaller than the string scale.
Counter-intuitive: One naturally expects that the string effect extends

to `s in any situation.
The regular solution exists for any horizon-radius.
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In the zero horizon-radius limit, the mass of the solution approaches
zero which is different from the lower dimensional cases.

Remaining problems:
1. The global structures:

Our numerical analysis was limited to outer spacetime of the event
horizon.

The global structures of the solutions such as the existence of the inner
horizon and (central or branch) singularity have not been clarified.
This may be done by integrating field equations inward numerically.

2. The ambiguity of the frames:

We have studied the solution in the Einstein frame.

There is, however, a possibility that the properties of solutions changes
drastically by transforming to the string frame. In particular, the
conformal transformation may become singular.

3. Stability:

The stability of our solutions is another important subject to study.

4. Charged solution:

It would be also interesting to extend our analysis to dilatonic black
holes (large and small) with charges.


