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1 Introduction
Solitons in Yang-Mills-Higgs theory in the Higgs phase (with 8 SUSY)

Elementary solitons: Vortex and Domain wall (Kink)
Vortices and Domain walls preserve 1/2 of SUSY : 1/2 BPS solitons
Composite solitons in the Higgs phase : 1/4 BPS solitons
Webs of domain walls, Magnetic monopoles with vortices,
Instantons inside a Vortex (Web of Vortices)
(Scherk-Schwarz twisted) dimensional reduction :
Web of Vortices — all other 1/4 BPS composite solitons
Web of Vortices is most important among composite BPS solitons
Our purpose:
Study configurations of instantons and vortex sheets (webs of vortices)
In 8 SUSY U (N¢) gauge theory with Ng = N¢ Higgs scalars
On R; X (C*)? ~ R*»! x T2 (5 dimensions) — Dim. reduction
By using Moduli Matrix formalism

Use amoeba and tropical geometry to describe Webs of vortices
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Results

1. Vortex sheets: zeros of a polynomial in the Moduli matrix

Instanton positions: common zeros with another polynomial

2. Mathematical language of amoeba and tropical geometry are useful
to visualize the web of vortices and to evaluate physical quantities.

3. Moduli matrix approach plays a crucial role to describe web of vor-
tices.
2 Vortices and Instantons

SUSY U(N¢) Gauge Theory with Ny Higgs fields
Higgs fields H as an N¢ X Ny matrix, p,v = 0,1,2, 3,4

1 y g2
L ="Tr —2—92FWF“ + D, H(D'H)" — Z(HHT — cln,)?

Gauge coupling g for U (N¢), Fayet-lliopoulos (FI) parameter ¢
Coordinates of (C*)?: (1, Y1, T2, Y2), 21 = T1+1Y1, 22 = To+1Y>

Higgs Phase : Walls, Vortices are the only solitons
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Instantons, monopoles, junctions are solitons

Energy of static field configurations
1 872
E > ——Q/T‘r(FAF)—c/'I‘rF/\w:—2I+27TcV
g g
w = L(dz1 A dz + dzz A dZ) : the Kihler form on (C*)?

Total instanton charge I, Instanton charge density Z

IE/I —#/Tr(F/\F):/CfQ

Vortex charge V', Vortex charge density YV

1
VE/VE——/TrF/\w =/c1/\w
27

Lower bound is saturated if the BPS equations are satisfied

2
. g
F.:,=0, D;H=0, —2i(F,s+F.,:)= E(HHT —clpng)

BPS equations contain at least instantons and intersecting vortex sheets
solutions to BPS eqs. preserve 1/4 of SUSY — 1/4 BPS states
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Solution of BPS equations
F: :, = 0 : integrability condition for D;, W3 = —iS_lagiS
Solution of the first 2 equations: H = S~'Hj with 85, Hy = 0
N¢ X Ny matrix Hy should be holomorphic : Moduli Matrix
Remaining BPS eq.(Master eq.): 2 = SST, Qy = %HOH(J,r

2

a21(528&(2_1) + 822(9@29_1) — _% (1NC o QOQ_l)

We consider Nc = Ng = N case
Meissner effect in the Higgs phase (Higgs VEV):
Magnetic flux can penetrate superconducting (Higgs) phase as Vortices

(Partial) restoration of gauge symmetry at the core of vortex
Vortex sheet in z1, zo € (C*)? can be defined by det Hy(z1,22) = 0

3 Webs of Vortex Sheets on (C*)?
Web of Vortices on (C*)? ¥~ R? X T? : y; ~ y; + 27 R;, 1 = 1,2

“1

P n1_n9 —_ R.

P(uy,uz) = detHy = g Anyin, Uy Uy, Uy = el
(n1,m2)€EZ2
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(a) Newton polytope (b) Amoeba

Figure 1: An example of amoeba; P(Ul, ’LL2) = Qo,0 + ai,oul + az,o’u% + ag,ou? -+ ap,1U2 —+

2 3 2 2 2,2
a1,1U1U2 + Q21 UTU2 + A3 1UTU2 + Qo 2U5; + A1 2UTUS + A2 2UTUS.

Newton polytope A(P) C R? of a Laurent polynomial P(uy, u2)
A(P) = conv. hull {(n1,n,) € Zz| Gy ns # 0

Qnyn, - Moduli parameters for the webs of vortices

Amoeba of P : a projection of generic webs of vortices on a1, 2
Ap = {(R1 log ||, Ralog|us|) € R? | P(ug,up) = o}

Tenticles: asymptotic regions extending to infinity

6



Normals to the Newton polytope: semi-infinite cylinders of vortices

Internal lattice points of Newton polytope: holes (vortex loops)

|1/
1]

(a) Amoeba (b) Tropical variety

Relation with Tropical Geometry

Figure 2: An example of the amoeba and corresponding tropical variety.

Amoeba is smooth even in the thin wall limit I = 1/g+4/¢c — 0
Tropical limit: Ry = Ry = R — 0 with fixed rp; n, = Rlog |@n n,
Amoeba degenerates into a set of lines (“spines”), called “tropical variety”

Skeleton (spine) of amoeba in R — 0 : position of domain walls



Figure 3: [ntersection of one tropical variety and its shift and Newton polytope A (P) (below).
Number of intersection points is given by 2Area(A(P)).



Intersection charge density becomes complex Monge-Ampere measure

1 1
Iintersection — / IT—: / ddc log |P|/\ddc lOg |P| — —/ ddc log |P|
X 871'2 47 X

Regularization : P — Py, P» associated with the same Newton polytope

1 1
—/ddc log |Pi| A dd.log |Ps| = —#(X1- X2) = Area(A)
872 2
4 Instantons inside Non-Abelian Vortex Webs

1 b(u1 UQ)
Hy = )
0 ( 0 P(Ul, ’u,z)
P(u1,uz) = Z an1,n2u?1u329 b(u1, uz) = Z bnbnzu?l%lugz
Vortex sheets are localized at P(uq,us) = 0

Instanton number: computed from €2 with the correct boundary conditions

(14 ]b? bP
P=1 pp 2B pp

1+|b|?
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2

B2, (D) + 0,009 = =7 (1 = |PPOT)

(€2 becomes a solution of the master equation if b is a constant)

1
I — W/ (dd. log | P| A dd.log(1 + |b|?) — dd.log | P| A dd.log |P)|)
TT

— Iinstanton - Iintersection
1 o1 )
Iipstanton = o2 2 dd.log | P|Add.log(1+|b|7) = 4—/ dd.log(1+|b|)
(C*) T Jx

X : zero locus of P corresponding to the vortex sheets
instanton number is given by the degree of the map b|x : X — CP!
Distribution of topological charge:
Small instanton limit: by, n, — oo with fixed by, n, /by s
dd.log(1 + |b|]?) — dd.log |b|? : delta function on b(uy, uz) = 0

Instantons are localized at common zeros of b(uy, uz) and P(uy, us)
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5 Conclusion

1. Vortex sheets: zeros of a polynomial in the Moduli matrix

Instanton positions: common zeros with another polynomial

2. Mathematical language of amoeba and tropical geometry are useful
to visualize the web of vortices and to evaluate physical quantities.

3. Moduli matrix approach plays a crucial role to describe web of vor-
tices.
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