Super Schrödinger in Super Conformal

阪口 真 (岡山光量子科学研究所)

2008/7/31 基研研究会「量子場理論と弦理論の発展」

吉田健太郎氏 (KITP, UCSB) との共同研究

"Super Schrödinger in Super Conformal," to appear in J. Math. Phys [arXiv:0805.2661 [hep-th]].

"More super Schrödinger algebras from psu(2,2|4)," to appear in JHEP [arXiv:0806.3612 [hep-th]].

1. Introduction

AdS/CFT correspondence as weak/strong coupling duality [Maldacena'97]

IIB string in $AdS_5 \times S^5 \iff \mathcal{N} = 4$ super Yang-Mills in 4-dim.

 $psu(2,2|4) \supset so(2,4) \times su(4)$

non-relativistic CFT (NRCFT) : QFT with Galilei enlarged to Schrödinger cf) CFT : QFT with Poincare enlarged to conformal

NRCFT: accessible experimentally fermions at unitarity (strongly coupled) [Hagen'72, Mehen-Stewart-Wise'99, Nishida-Son'07,...] A scalar in $(d+1)\text{-dimensions}~~\partial^2\phi=0$.

Let $t = \frac{1}{\sqrt{2}}(x^0 - x^d)$ and $\xi = \frac{1}{\sqrt{2}}(x^0 + x^d)$, and consider a mode with definite momentum along ξ , $\phi = e^{-im\xi}\psi(t, x^i)$, and then $\left(i\partial_t + \frac{\nabla^2}{2m}\right)\psi = 0$.

This is invariant under the group of the Schrödinger algebra, Sch(d-1):

Galilean symmetry $\{H, P_i, K_i, J_{ij}\}$, dilatation D, Galilean special conformal C,

central charge N (the momentum along ξ).

Schrödinger algebra Sch(d-1) is simply related to conformal algebra so(2, d+1).

Super Schrödinger algebras from psu(2,2|4), osp(8|4) and $osp(8^*|4)$

[Yoshida-MS'0805,'0806]

What's the gravity dual ?

• AdS₅ on x^+ [Goldberger'0806, Barbon-Fuertes'0806] Schrödinger symmetry via boundary condition

24 supersymmetric (see Appendix E in [Maldacena-Martelli-Tachikawa'0807])

• deformed AdS₅ [Son'0804, Balasubramanian-McGreevy'0804]

string background with *B*, finite temperature and finite density [Herzog-Rangamani-Ross'0807, Maldacena-Martelli-Tachikawa'0807, Adams-Balasubramanian-McGreevy'0807]

Non supersymmetric (even in zero temperature)

Contents

1. Introduction

- 2. $\mathcal{N} = 4$ superconformal algebra psu(2,2|4)
- 3. Schrödinger algebra
- 4. Super Schrödinger algebra with 24 susy
- 5. Super Schrödinger with less susy
- 6. Super Schrödinger in osp(8|4) and $osp(8^*|4)$
- 7. Summary and Discussions

2. $\mathcal{N} = 4$ superconformal algebra psu(2,2|4)

The super isometry of $AdS_5 \times S^5$, psu(2,2|4) a = 0, ..., 4 and a' = 5, ..., 9

$$so(2,4) = \{P_a, J_{ab}\} \quad ; \quad su(4) \cong so(6) = \{P_{a'}, J_{a'b'}\} \quad ; \quad 32 \text{ supercharges } \mathcal{Q} = \begin{pmatrix} \mathcal{Q}^1 \\ \mathcal{Q}^2 \end{pmatrix}$$

Let
$$\mu = 0, 1, 2, 3$$
 and $p_{\pm} = \frac{1}{2} (1 \pm \Gamma^{0123} i \sigma_2)$

and then these generate $\mathcal{N}=4$ superconformal algebra with su(4) R-symmetry in d=1+3.

3. Schrödinger algebra

$$\mu = (0, i, 3)$$
 with $i = 1, 2$.

$$P_{\pm} = \frac{1}{\sqrt{2}} (\tilde{P}_0 \pm \tilde{P}_3) , \quad K_{\pm} = \frac{1}{\sqrt{2}} (\tilde{K}_0 \pm \tilde{K}_3) , \quad J_{i\pm} = \frac{1}{\sqrt{2}} (\tilde{J}_{i0} \pm \tilde{J}_{i3}) ,$$
$$D = \frac{1}{2} (\tilde{D} - \tilde{J}_{03}) , \quad D' = \frac{1}{2} (\tilde{D} + \tilde{J}_{03}) , \quad P_i = \tilde{P}_i , \quad K_i = \tilde{K}_i , \quad J_{ij} = \tilde{J}_{ij}$$

and then a set of generators

Let

Sch(2):
$$\{J_{ij}, J_{i+}, D, P_+, P_-, P_i, K_+\}$$

(K_i) (N) (H) (C)

forms a subalgebra, the Schrödinger algebra

$$\begin{split} & [P_i, K_+] = \frac{1}{2} J_{i+} , \quad [P_i, J_{j+}] = \eta_{ij} P_+ , \quad [J_{i+}, P_-] = -P_i , \quad [P_-, K_+] = -D , \\ & [D, J_{i+}] = -\frac{1}{2} J_{i+} , \quad [D, P_-] = P_- , \quad [D, P_i] = \frac{1}{2} P_i , \quad [D, K_+] = -K_+ , \\ & [J_{ij}, J_{k+}] = \eta_{jk} J_{i+} - \eta_{ik} J_{j+} , \quad [J_{ij}, P_k] = \eta_{jk} P_i - \eta_{ik} P_j \end{split}$$

where P_+ is center, and $\{H, D, C\} = sl(2;\mathbb{R})$.

4. Super Schrödinger algebra with 24 susy

Let [Yoshida-MS'0805]

$$S = \tilde{S}\ell_{-}, S' = \tilde{S}\ell_{+}, Q = \tilde{Q}\ell_{-}, Q' = \tilde{Q}\ell_{+}, \ell_{\pm} = \frac{1}{2}(1 \pm \Gamma^{03}) = \frac{1}{2}\Gamma^{\pm}\Gamma^{\mp}$$

and we find
 $\{Q,Q\} \sim P_{+}, \{Q,Q'\} \sim P_{i}, \{Q',Q'\} \sim P_{-}, \{S,S\} \sim K_{+}, \{Q,S\} \sim J_{i+}, \{Q',S\} \sim J_{ij} + D + P_{a'} + J_{a'b'}, [K_{+},Q'] \sim S, [P_{-},S] \sim Q', [P_{i},S] \sim Q, [J_{i+},Q'] \sim Q, [D,Q'] \sim -Q', [D,S] \sim S.$ (in addition to Lorents and R-symmetry)

Thus the set of generators

$$\{\underbrace{J_{ij}, J_{i+}, D, P_{+}, P_{-}, P_{i}, K_{+}}_{\mathsf{Sch}(2)}, \underbrace{P_{a'}, J_{a'b'}}_{\mathsf{su}(4)}, \underbrace{Q, Q', S}_{\mathsf{8} \times \mathsf{3} = \mathsf{24 susy}}\} \subset \mathsf{psu}(\mathsf{2},\mathsf{2}|\mathsf{4})$$

forms the super Schrödinger algebra with 24 susy and su(4) R-symmetry.

- $AdS_5 \times S^5$ on x^+ [Goldberger'0806, Barbon-Fuertes'0806] is 24-supersymmetric : $\delta \psi = 0$ [Maldacena-Martelli-Tachikawa'0807]
- {Sch(2), su(4), Q, Q', S} \supset {Sch(2), su(4), Q} \supset {Sch(2), Q}

5. Super Schrödinger with less susy

[Yoshida-MS'0806]

(1) $\mathcal{N} = 2$ superconformal with $su(2)^2 \times u(1) \subset psu(2,2|4)$

Further introduce 1/2 projector $q_+ = \frac{1}{2}(1 + \Gamma^{5678})$ and let $Q = Qq_+$. su(4) \supset so(4)×u(1) ; $J_{\bar{a}'\bar{b}'}$ ($\bar{a}' = 5, 6, 7, 8$) and P_9

⇒ super Schrödinger with 12 susy and su(2)²×u(1) generated by {Sch(2), $J_{\bar{a}'\bar{b}'}$, P_9 , Q, Q', S}

(2) $\mathcal{N}=1$ superconformal with $u(1)^3 \subset psu(2,2|4)$

Further introduce 1/4 projector $q_+ = \frac{1}{2}(1 + i\Gamma^{56})\frac{1}{2}(1 + i\Gamma^{78})$ and let $Q = Qq_+$. su(4) \supset u(1)³; J_{56} , J_{78} and P_9

 \implies super Schrödinger with 6 susy and u(1)³ generated by {Sch(2), J_{56} , J_{78} , P_9 , Q, Q', S} (3) $\mathcal{N} = 1$ superconformal with u(1), su(2,2|1)

let R be the diagonal $u(1) \subset u(1)^3$ in (2), and then su(2,2|1) is generated by {conformal, R, \tilde{Q}, \tilde{S} }

 \implies super Schrödinger with 6 susy and u(1)

The super Schrödinger with u(1) is the symmetry of the non-relativistic Chern-Simonsmatter system [Leblanc-Lozano-Min'92]

two-comp. real spinor to complex spinor

Convert a two-component real spinor into a complex spinor.

 $Q = Qp_-q_+\ell_-$ is a real two-component spinor. Let $q = Qk_+$ and $q' = Qk_-$ with $k_{\pm} = \frac{1}{2}(1 \pm i\Gamma^{12})$, and then $q^* = q'$ as $k_{\pm}^* = k_{\mp}$. So q is a complex one-component spinor. Similarly for Q' and S.

No other example

6. Super Schrödinger in osp(8|4) and $osp(8^*|4)$

(1) super AdS₄×S⁷ algebra osp(8|4) [Yoshida-MS'0805]

$$\Downarrow \quad \tilde{Q} = Qp_{-} \text{ and } \tilde{S} = Qp_{+} \text{ with } p_{\pm} = \frac{1}{2}(1 \pm \Gamma^{012})$$

 $\mathcal{N} = 8$ superconformal with so(8) in $d = 1 + 2$

 \implies super Schrödinger with 24 susy and so(8) R-symmetry in d = 1 + 1generated by {Sch(1), so(8) generators, Q, Q', S}

(2) super
$$\operatorname{AdS}_7 \times S^4$$
 algebra $\operatorname{osp}(8^*|4)$
 $\Downarrow \quad \tilde{Q} = \mathcal{Q}p_- \text{ and } \tilde{S} = \mathcal{Q}p_+ \text{ with } p_{\pm} = \frac{1}{2}(1 \pm \Gamma^{6789\natural})$
 $\mathcal{N} = 2$ superconformal with $\operatorname{sp}(4)$ in $d = 1 + 5$

 \implies super Schrödinger with 24 susy and sp(4) R-symmetry in d = 1 + 4generated by {Sch(4), sp(4) generators, Q, Q', S}

7. Summary and Discussions

Summary

• super Schrödinger algebras [Yoshida-MS'0805,'0806]

d	# susy	R-symmetry	subalgebra of	
1+2	24	su(4)	psu(2,2 4)	$N = 4, \ d = 1 + 3$
1+2	12	$su(2)^2 imes u(1)$	psu(2,2 4)	$N = 2^*, \ d = 1 + 3$
1+2	6	$u(1)^{3}$	psu(2,2 4)	$N = 1^*, \ d = 1 + 3$
1+2	6	u(1)	su(2,2 1)	$N = 1, \ d = 1 + 3$
1 + 1	24	so(8)	osp(8 4)	$N = 8, \ d = 1 + 2$
1 + 4	24	sp(4)	osp(8* 4)	$N = 2, \ d = 1 + 5$

- half of superconformal charges is projected out
- super Schrödinger with su(4) is the symmetry of $AdS_5 \times S^5$ on x^+
- super Schrödinger with u(1) is the symmetry of the NR Chern-Simons-matter system

Future directions

- non-relativistic systems with super Schrödinger symmetries found above
- $\mathcal{N} = 4$ SYM on x^+ and super Schrödinger with su(4)
- $\circ\,$ super Schrödinger with less susy in d=1+1 and 1+4
- index for NR CFT with super Schrödinger symmetry found above super Schrödinger of SU(2,2|1) [Nakayama'0807]
- $\circ~$ and so on