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1.Introduction

- We believe that noncommutative field theories are important subjects
for studying Planck scale physics, especially quantum gravity.

- Recently, it was pointed out that noncommutative field theories would
have nontrivial symmetries, which have Hopf algebraic structure.

Moyal plane: Chaichian, Kulish, Nishijima, Tureanu (2004),etc.
Noncommutative gravity: Aschieri, Dimitrijevic, Meyer, Schupp, Wess (2005), etc.
SU(2) noncommutative spacetime: Freidel, Livine (2005), etc.

- In order for quantum field theories to possess Hopf algebraic
symmetries, we have to include braiding (nontrivial statistics).

SU(2) noncommutative spacetime: Freidel, Livine (2005)
Moyal plane: Balachandran, Mangano, Pinzul, Vaidya (2006)
General case: Y.S, Sasakura (2007)

- In addition to the importance of the Hopf algebraic symmetries,
the braiding can recover the unitarity and renormalization.
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- We want to study more physical aspects of Hopf algebraic symmetry.

m)  How is “symmetry breaking” of Hopf algebraic symmetry?

- We study a domain wall soliton in three dimensional noncommutative
field theory in Lie-algebraic noncommutative space-time

(2, 1] = 2ikeF .

- It is interesting to consider a domain wall soliton in the Lie-algebraic
noncommutative space-time because

1. What is the generator of a one-parameter family of domain wall
solutions which comes from a Hopf algebraic translational symmetry?

2. Is the moduli field on a domain wall massless?
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2. Review of noncommutative field theory in the Lie-algebraic noncommutativity
[j;” :@j] = 2ike "z, (i,5,k=0,1,2) Imai, Sasakura (2000), Freidel, Livine (2005)

Commutation relation

7', 7] = 2ike 1y,
o B - o Lorentz invariance and Jacobi identity
P = =i\ 1+ K2P? + ket P, are satisfied.
[P’ P/] = 0.
These operators can be identified with Lie algebra of ISO(2,2)
. 1 ., -
T = R(J—l.i - —€ijkj'k): N A 1 .. -
. ) ' 2 ’ { M, = K,(J_l,i + §€gk<]jk), J
P’é - P,u,:ia
with the constraint

2ppp
1+ r"P'P, =0 |:> SL(2,R) group momentum space
(,U/ — _1707172)

where 1SO(2,2) Lie alg. is given by  [J,,. Apcr]
o B
|

(n,upt]ucr - T],ucTJup - T]upj,u,a + nuaJ,u,p)a
,upPy

—1
—i(1 - 77Upp,u)a

0,

[ L



Scalar field g =P (g9) —ikP'(g)6; € SL(2,R)
_ /dg(;g(g)éép(g)'m Gy = 09, 01 = i03, 03 = i0]
P~ (g) = +\/1+ k2Pi(g9)Pi(g)
Star product ﬁ

From now on, we pay attention to
@Zp(gl)‘r * QQP(QZ)I — e"ip(gng)-:I‘-

: the positive sign for simplicity.

where

P (9192 91 \/1 Ii2P 92 —|— \/1+I€2P(gl)2p (92) liéijkpj(gl)Pk(gz) .

Thus coproduct of the translational operator is given by

A(PY) =P @1+ Kk2P'P,+ /1 + k?P'P, @ P’ — ke*P; @ P,

me)>  Hopf algebraic structure!

Thus, the momentum conservation is deformed.
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Action

S= [da| - 5065 86)0) - g6+ 0)a) - §Gxox0x )

- At the quantum level, deformed momentum conservation is violated
in the non-planar diagrams. Imai, Sasakura (2000)

- To keep the momentum conservation law, we have to introduce braiding
such that

w(él(gl)éz(gz)) = 6332(92)@31(9219192) ,

which was discovered in three dimensional quantum gravity.

Freidel, Livine (2005)



3. Derrick’s theorem in the noncommutative gb4 theory

Action
S‘/dBT — 100 00)(@) + 2mA (6 6)(w) = (0 6 ) (@) — 2
= | — gl 2 [y
Equation of motion for ¢(z) V(o)

Po(r) + m>p(r) = Mo+ 6+ 9)(x) = 0

E { « Star product is included.

» Translational symmetry is not clear.

- Consider only one spatial direction and define

P = %Siﬂh(ﬁ}@) , where —oo < ) < oc.

-

P(x) = /dg(b )etP(9)e /d9~ e sinh(r0)z usual sum!

|::> < eiP(gl)x*ez (92)x _ ezP(glgz)a} ﬂ

: 6% sinh(k61)x % €£ sinh(k62)x sinh(k(01+62))x

Z
— K
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do -

- Next, we define | h(z) = /2—@(9)6@.
w

- Equation of motion becomes

1 :
— sin?(k0)h(x) + m*h(x) — M\*(2) = 0.

* NO star product
,i2

e translation invariant

- To analyze this, we consider an action for /()

Sk = /d’l“ L sin(kd)h(x) sin(kd)h(x) + 1771,2}1,2(/1") — Ahﬁl(@) _m
= Tk TEAE i 5 ks _

- Expanding with K , the energy is

1 [ 5 |
En=—5 = /d'f [§ (Z K20, 0“'%(:1?)0%(37)) + V(h(fﬂ))] :

n=1

where (C, =271/ (n!2n — D) > (

V (h(z)) = —im?h?(x) + 204 (x) + 22 > 0.
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- Rescaling v — 2" =pa' (0 < p < oo) and defining

W (x) = h(px) |, the energy for h'" () becomes

Eh(p) /dw[

-/ dxﬂ (Zw 20 >)2) +V(h<x'>>]

1 _
= —Fy+ Z ,u2n 1E2n, Eh(ﬁ)

n=1

N | =

=

where Ey = f (h(x)),

/dT (0"h

( 3 "—QCn(a”hW(a;))?) —I—V(h(“)(x))]

- Since allthe £y and F5, are non-negative, Ey o

takes a minimal value at a positive finite [L.

:> Domain wall solitons may exist.

HO "
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4. Domain wall solitons and the moduli fields in Lie algebraic noncommutative
spacetime

4.1 The moduli space of the domain wall and the generator

- Equation of motion for (z) is given by
1, .
=) sin?(k0)h(x) + m*h(x) — A\h*(x) = 0.

This equation is invariant under the usual translaton I — T + a

- We can obtain the perturbative solutions as follows.
h(x) = ho(x) + ~*he(x) + K hy(x) + - - -

ho(x) = tanh(x + a),

ho(x) = 2(3‘“’__)"‘ a) B 4 tanl})(:;f: +a)
2 3cosh®(x +a)  3cosh?(x + a)
h_._L(;IT) — 134(; — (i‘.-) — - 8(:);l+ (_I_.) - 40 t“ll.h(.’z‘f + (.i'..) Where
45cosh*(z +a) 3cosh’(x +a)  9cosh*(z + a) m2 = 2, A\ =

4z +a)’tanh(z +a)  52tanh(z + a)
9 cosh®(x + a) 9cosh’(z +a)




- Solutions of ¢(x) are in principle given from h(z + a) .

- , dl -~
h(ZE) = /ﬁgf)(ﬂ)em / 9 0a 'LQw
W J
o) — dv 1 L sinh(k6)zx / do - 9 10a —Slnh(FLQ)
o(x) —/27rgz>(9)e~
= "¢ (2)
where 0 = %Sinhl(/{f’)

Fat

Thus, § is the generator of a one-parameter family of domain wall solutions.

In the usual case ( kK — (0 ), the generator of a one-parameter family
of domain wall solutions is given by g — P



4.2 The moduli field from the Hopf algebraic translational symmetry

a

- Let us assume @, (azl) IS a general solution of the one dimensional
equation of motion for Cb(i.l?) . We expand ¢;,; (azl) with respect to (1

as

oot (1) = Pscr(z’) +a gla) + -+,

where g(z') should satisfy the following equation,

O*g(zh) + m2g(at) — 3Adso (1) * dea(z') % g(a) = 0.

- In order to obtain an equation for a moduli field, we replace «

to a moduli field a(xg, z2)

O(x) = dsor(xt) +a(a’, 2?)xg(zt) + - - -

This should satisfy the three dimensional equation of motion for @(z)
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- Inserting ¢(2) = ¢eu(x')+a(z?, 2*)*xg(z") into the equation of motion,

and taking the first order of a(xg,z2), we obtain

O*(a(2®, 2%) x g(a)) + m*(a(2®, 2%) % g(z1))
0

— 3A\sor (") % dsor (') ka2, %) % g(x') = 0,

where we have used the braiding property
O1(z) * P2(x) = ¢a2(x) * ¢1(x).
- Using the equation for g(z') , we obtain

(g(x') — OPg(x")) x a2, 2®) =0

-Since g(xz') — d?g(x') # 0, we obtain

82&(:1703 r9) = 0.

Thus we find that the moduli field, which propagates on the domain wall, is massless.



5. Summary

- We studied the domain wall solution and its moduli in the Lie-algebraic
noncommutative space-time.

- We found that the generator of a one-parameter family of the domain wall
solutions is given by 0 = %Sinh_l(nﬁ)

- We checked the moduli field on the domain wall is massless.

Question

- A scalar field ¢(z) is not a c-number in braided quantum field theory.
Can we interpret the classical solutions with the braid statistics physically?



