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Assertion

Tomboulis’s assertion
Proof of the area law in 4-dimensional SU(2) lattice Yang-Mills

theory, for any finite bare coupling

@ Partition function on periodic lattice A

Z\(3) = / ] s exp (g > ReTrp Up> 6

beA PCA

4
g5

@ Plaquette variables Up = Uy, Uxyp, UI+V7”U,T(7,,

Eas
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INGCERE

@ Area law of the Wilson loop (area A, = RT /&)

C ] /a
1/ a
(W(C)) = <;Tr1/2 11 Ub> ~exp(—6Ac) (o string tension)
beC

@ Linear confining potential V(R) ~ 6R/&
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Caveat 1

@ The assertion is highly non-trivial,
e cf. 3-dimensional U(1) lattice gauge theory (Gépfert-Mack)

However, it does not necessarily mean the quark confinement
in continuum Yang-Mills theory

@ The continuum theory is defined as a weak coupling limit

a— e BEm) g gt o py= M
/\L gg

@ One must prove the expected scaling (5/a®> — const.)

4byp)

5o e P/ for 3 — oo
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Numerically... (Creutz 80, SU(2))

46 Gernot Mianster / High-temperature expansions




Overview
ooe

and the continuum limit is. . .

@ SU(3) (Bali-Schilling-Wachter '97)
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Caveat 2

The proof is incomplete. ..

@ A serious leap of logic (pinned down by Kanazawa)
@ At present, it is not clear how to remedy this point

@ It is even not clear whether his way of argument will be
useful in the future. ..
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Underlying idea

@ Area law is almost obvious for small 3 (“strong coupling”)

(Wilson ’74)
) / IT ot W exp( S T Up>
bel PCA
[dUUp =0

f au UabU cd — 5ad5bc
C
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Underlying idea

@ Area law is almost obvious for small 3 (“strong coupling”)

(Wilson ’74)
) / IT ot W exp( S T Up>
bel PCA
[dUUp =0

f au UabU cd — 5ad6bc
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Underlying idea

@ Area law is almost obvious for small 3 (“strong coupling”)

(Wilson ’74)
) / IT ot W exp( S T Up>
bel PCA
JdU Uz =0 Pl PP
[ AU Uap U}y = 182006 oo e
C T/a
Pl PP
PP P
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Underlying idea

@ Area law is almost obvious for small 3 (“strong coupling”)
(Wilson ’74)

(W(c / [ au,w exp( > T Up>

bel PCA
JdUUx =0 Pl PP
[ AU Uap U}y = 182006 oo o
C T/a
Pl PP
PP P
@ For g« 1, R/a

Ac
(W(C)) ~ <£> =0 = —log(3/4) >0
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Basic reasoning

@ Strong coupling expansion for § < 1

A 2 5g*  1117° 325348
o = —log(B/4) + 24 288 | 414720 2654208

has a finite radius of convergence (Osterwalder-Seiler,
Kotecky-Preiss)
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Basic reasoning

@ Strong coupling expansion for § < 1

A 2 5g*  1117° 325348
o = —log(B/4) + 24 288 | 414720 2654208

has a finite radius of convergence (Osterwalder-Seiler,
Kotecky-Preiss)
@ Cannot extrapolate large 3 (“weak coupling”) physics to
small 5 (“strong coupling”) physics?
@ Wilsonian renormalization group from short distance to
long distance?
e Exact treatment is difficult. ..
@ Approximate coarse-graining (block-spin) scheme?
e Migdal-Kadanoff transformation
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Steps in the proof

@ Migdal-Kadanoff (MK) transformation (approximate RG)

e Upper and lower bounds for Zx(3)
e Interpolation parameters «, that provides an exact
expression for Zx(3)

@ Twisted partition function Z,(\_)(ﬁ)
o Repeat the above steps using interpolation parameters a;;

© Prove that it is possible to take a, = ot for n>> 1. The
ratio (vortex free energy)

Z\(B)
27 ()

is given by a convergent strong coupling expansion

© Tomboulis-Yaffe inequality = Area law



Step 1
9000000

Migdal-Kadanoff (MK) transformation ('76, '77)

@ Approximate block-spin (coarse-graining) transformation

a— ba— b’a— bla— - 2<beN
A — AD S AR L AG) L.

number of plaquettes  |A] — |[AM)] — [A®)| — |AG)| — ...

@ 3-dimensional b = 2 case




Step 1
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MK transformation (cont’d)

@ The action changes as: A,(U,0) = 8 Trip U
Ap(U,0) — Ap(U, 1) — Ap(U,2) — Ap(U,3) —
@ Character expansion: x;(U)=Tr; U (j=0,1/2,1,3/2,...)
exp(Ap(U, n)) ZdF d=2j+1

[1+qu X,U)] Fom)o(U. )
j#0

@ In terms of expansion coefficients

Fo(0) — Fo(1) — Fo(2) — Fo(3) — -
Gi(0) — ¢i(1) — ¢i(2) — ¢(3) — - -



Step 1
[e]e] lelele]e]

MK transformation (cont’d)

@ The partition function changes as

Zy 1({ci(n—1)} / II dus [ folUpn—1)

beA(r=1) pCA(=1)
— Fo(m""1Zy({ci(m)})

= Fo(n)\" |/HdUb prup,

beA(n) pCAM
@ For the MK transformation with r = 1, it can be seen that

fo(U,n) >0 if f,(U,0) >0



Step 1
[e]e]e] Jelele]

MK transformation (cont’d)

Definitely,
@ Step 1: plaguette move

@ For example, (1, 2)-plaquettes (totally b%) are moved as

(X1, X2, X3, X4) = (X9, X2, ba,ba)  a< x3,X4 < ba



Step 1
[e]e]ele] lele]

MK transformation (cont’d)

@ Step 2: 2-dimensional integrations (this step is exact)

@ Under these steps, coefficients change according to

Fo(n—1) — Fo(n) = (Fo(n))? (>1--DL )

~ b2r
G(n—1) = g(n) = (g((ff)) (0 < g(n) < 1)

Fin) = [ Ul n - 11 Gy(U) (>0~ DL )

@ Tomboulis introduced the deformation 0 < r < 1



Step 1

[e]e]ele]e] o]

Flow of the MK transformation
@ When r =1, for d < 4, regardless of the initial 5 (Ito ’85,
Muller-Schiemann ’88)
¢i(n) — 0 as n— oo
@ Couplings flow to the strong coupling limit (¢; ~ 5)

p=1.6r=1.0
1 T T T
n=0 ——
n=1 ---———-
n=2 --------
0.8 |1 n=3 ,
n=4 -—--
n=5 -------
n=6 -
0.6 1
e
=
0.4 1
0.2 ,




Step 1
000000

Flow of the MK transformation (cont’d)

@ When 0 < r < 1, for d = 4, there exists a critical 5¢(r) such
that

¢i(n) — 1 as n— oo if Be(r) <
c(n)—0 asn—oo ifB<Be(r)

5

45
4|
35
3l
< 251
2|
15

1k

05 [
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0.1 02 03 04 05 06 07 08 09 1

@ Convergence to the strong coupling limit can be rigorously
proved, if r =1 —1/b and b is sufficiently large (Kanazawa
'08)



Step 1
L]

Upper and lower bounds for the partition function

@ MK transformed partition function provides an upper bound
for the partition function in a one-step before

Zo1({ei(n—1)}) < Fo(mN"1 Zy({ci(n)})

@ The proof is not difficult (see Tomboulis, Appendix A §4 for r = 1 case and note
that ¢;(n) with 0 < r < 1 are larger than those with r = 1)

@ The lower bound

1<Z,1({ci(n—1)})
follows from the facts that

ol oz (g =0 =1

@ The former can be proved in a similar way to the usual proof of the reflection
positivity (RP)



Step 1
[ ]

Interpolation by «a

@ Upper and lower bounds for the partition function

1< Z1({g(n— 1)} < Fo(m"”1 Zo({c(n)})
@ Define
Zo(a, 1) = Fo(n) "IN Zy({agi(n)})  0<a <1 teR

@ The function h(«, t) specifies a way of interpolation, ex.
h(a, t) = exp (—t1=2)

oh oh
_ _— = —71
5o >0 55 <0 hO,)=0 h(1.0)

@ Thus (since 8Za({cj(n)})/dck(n) > 0 and Fy(n) > 1)

1= Z,(0,1) < Zn_1({gi(n — 1)}) < Zn(1, 1)



Step 1
L o)

Exact expression for Zx(3)

@ Forn=1,setting t = #,

1=2(0,t) < Z\(B) < Z1(1, 1)
@ Thus, there exists a« = a4(t;) such that

ZN(B) = Z1(on(tr), 1)

= Fo(1)Mr NP1 Z, ({a1 (1) (1))

@ Forn=2, setting t = b,
1=25(0, 1) < Zi({o1(t)g(1)}) < Z({g(1)}) < Z(1, 1)

@ Thus, there exists a = ax(t) such that

Zi({o1(t)g(1)}) = Zolaz(t2), )
= Fo(2)Me2@&)A® 7, ({0, (1) c;(2)})



Step 1
oe

Exact expression for Z5(3) (contd)

@ Repeating these,

n

Zp(B) = | [] Fo(m)rentimtmlN1 Z,(fan(tn)i(m)})

m=1

@ Note
an(t)ci(n) < 1 for n > 1



Step 2
[ ]

Center vortex and twisted partition function

@ Vortex Vis a (1,2) plaquette and its translations along 3-4
directions (a closed surface in the dual lattice)

DAONDADNANANDAND
NNNYNNNNNYNNN

@ Twisted partition function —1 € center of SU(2)

ZB) = / 1] dus exp (g [Z Tri2(—Up)+ > Tripe Up])

beA pCV PCA\V



Step 2
L]

MK transformation for Z (/3)

@ For MK transformed ones, we define

({ci(n / H s [ {1+Z Yidic(n X,(Up)}

beAn pcCv J#0
X H {1 + Z dici(n)x;(Up) ]
PCAM\Y J#0

@ MK transformations applied to Z,(\’)(ﬂ) give rise to the
sequences

Fo(0) — Fo(1) — Fo(2) — Fo(3) —
6(0) — (1) — ¢(2) — ¢(3) —

that are identical to that for the untwisted one Zx(5)



Step 2
[ ]

Exact expression for Z,(\_)(ﬁ)

<} Z,(f) provides the upper bound for Z( ) (Tomboulis, Appendix A

§4) but since 82,(,’)({0,-}) /Ock can be negatlve, we cannot
repeat the argument in Step 1

@ Nevertheless
i ({e)) = (zn({c,}>+z< ({c,})>

satisfies 0Z; ({cj})/0ck > O (The proof that uses a topological
property of the center vortex is interesting; see Tomboulis, Appendix A §2)

@ Therefore

n

Z{(8) = [H ) (ta) N '] Z} ({af () (n)})

m=1



Ratio Z,(8)/Zx(5)

@ Ratio of twisted and untwisted partition functions

2:(8) |y Fom)Mest RN Z3 (faii (67)g(n)})

20 ™ [Ty Fom)entm A1) Zy({an(in)ci(m)})

@ If the original lattice A is sufficiently large, it is possible to
take t, for each t, such that

h(afh(th), t5) = h(am(tm), tn)  form=1,2,3,...,n
@ Then “bulk energies” are cancelled and we have

Zy(8) _ Zi ({ed (t3)gi(m})
Zp\(B) Zn({an(tn)cj(n)})




Crucial step

@ Now, Tomboulis proves that, if n is sufficiently large, there
exists t* such that

o = ap(t*) = af (%)
@ Proof: Introduce a function (0 < A < 1)
V(A t) = h(an(t), t)
; Iog;O(n)MZ” (1 = \log Z; ({as (6)5(m)})
+Aog ZF ({an(t)gi(n)}) — log Z, 4]
@ Motivation for W(\, t) = 0:

V(A = 0,t) = 0 has the solution t = f,
V(A =1,t) = 0 = The solution t is t*



Crucial step (cont'd)

@ The solution #(X\) of W(A, t(\)) = 0 satisfies

dt(\)  Ov/ox
dx __aw/at(k’ t)

@ So t* = {(1) will be obtained by iteratively solving

=t /anw/aA )

8\!!/81‘
: OV(A,t
(’)#0 for0 <A <1
ot
@ Infact, for n>> 1 (that is for ¢;(n) < 1)
awé)t\,t)<0 for0 <A<

QED



Step 4
Vortex free energy

@ We now have (setting o* = an(t*) = ajf (t*))

ZY(8)  Ziargnd)  20()  ZV)({arg(n

_ - )
ZB) ~ Zllerg(m)) . Z8) | Zo({org(n)}
and a*¢j(n) < 1

@ The right hand side is given by a convergent series (the
strong coupling cluster expansion) (Minster '81)

Z ) ({arg(n)})
09~ Z ({5 (n))

1))
)

= 2L exp (~p(m) L L")

where the 't Hooft string tension is

p(n) = —log(a*cyja(n) — 4(a*cija(n)* +--- >0



Tomboulis-Yaffe inequality

@ Tomboulis-Yaffe inequality ('85)

1 Z(f)(ﬁ) Ac/LiLs
o =N
w59}

NONDNNBRNDN
NMAAAR \I\IQ

W
\




INGCEREN

@ For a fixed n>> 1, for asymptotically large A, noting
L =1,/b"
o = b

wiey < e (55040

@ Since (W(C)) cannot decay faster than the area law
(Seiler ’78),

(W(C) ~exp(-5A) 5200

This completes the proof of the area law for any fixed j!



INGCEREN

@ For a fixed n>> 1, for asymptotically large A, noting
L =1,/b"
o = b

wiey < e (55040

@ Since (W(C)) cannot decay faster than the area law
(Seiler ’78),

(W(C) ~exp(-5A) 5200

This completes the proof of the area law for any fixed j!

Is this correct?



Afterward. . .
°

Question arose by lto-Seiler

@ The proof could be applied even to 4-dimensional
(compact) U(1) lattice gauge theory!

@ In particular, the convergence of the MK transformation
cannot distinguish U(1) from SU(2)!

@ Once after going toward the strong coupling region, U(1) is
almost the same as SU(2) (cluster expansion etc.). ..

@ The weak coupling region of the U(1) theory must be in the
Coulomb phase! (Guth ’80, Fréhlich-Spencer ’82, Seiler
'82)

Something is wrong???



Afterward. . .
®00

After all, what is wrong?

A serious leap of logic! (Kanazawa)
@ | said that, in Step 3, t* = t(1) will be obtained by iteratively

solving
,a\U/aA, ,
/d)\ ot )
: V(N t
ét’);«éo foro <A<

But this is wrong!

@ JV(\, t)/ot # 0 is not a sufficient condition for the
existence of f(\)!



Afterward. . .
o] Yo}

After all, what is wrong? (cont'd)

@ For example, for
V(N D =et—1+2)
we have
V(A1)
ot
@ However, the solutionto W(\, t) =0is

=—e1£0 for0< <1

t(A) = —log(1 —2X)

and this cannot be continued beyond A = 1/2 and {(1) is
not real

@ The reason is
OV (A, t(N))

pT: =0 forA=1/2atwhicht= o0



Afterward. . .
ooe

After all, what is wrong? (cont'd)

@ The right condition is

WALV 2o foro<r<1
ot

and not

oV(A 1)
ot
@ This difference can be crucial in the real problem, because
V(A1) < ‘6h(an(t), t)
ot - ot

# 0 forO0 <A <1and |t < oo

t—o0 0

for typical h(a, t)

The existence of t* = t{(A = 1) is not yet guaranteed and the
proof is incomplete. ..




Afterward. . .
°

t* really exists? (H.S., unpublished)

@ If the interpolation function h(a, t) satisfies
h(a, t) < Ca C>0

and b > 3, then t* does not exist. ..
@ Examples of such h(a, t) (t > 0)

h(a t) = exp (—f1 ;a> » e, ) =tanh (ﬁ)

@ The inequality

ki exp(—65b2") < any1(t*) < kyexp(—b25b3")

clashes for n — o if b? > 6

@ Such restriction on h(«a, t) and on b is not obvious in the
proof. ..



Afterward. . .
®0

Simplification and generalization (Kanazawa)

@ For G = U(N) or G = SU(N), there exists
ap = ap({cr}, {acl}) such that

1
‘”“’“’(M)

and
Za({er})  Zan({acr}) ”
Zeh) " Zw{ancyy Mol = QZE;AQZ ({cr})

where A9 > 0 and H is a discrete subgroup of the center of
U(N) or SU(N)

@ This statement can be proved without using the MK!

@ After proving Zy < Z, (~ RP), just 1 page is enough to
prove this!



Afterward. . .
oe

Simplification and generalization (Kanazawa)

@ Generalization of the Tomboulis-Yaffe inequality to SU(N)

1 Ac/LiLp
(Wi )r<2{ NZZA{Q}}

gezy

where
W(€)= Zx(P T W)
beC
and N-ality of the representation r is non-zero

@ Then, if {ac,} can be chosen such that ag = @) = «, then
the area law will follow

[(W,(C))| < g PAc/P



Conclusion

Conclusion

@ Suggestive, but incomplete. . .
@ It appears that the representation

e Zw(oed) ) ]
Z({e}) ~ Zw(oncy) NN = QEE;IAQZA({@})

does not possess (much) dynamical information
-.- Kanazawa'’s derivation does not use the MK at all

@ Quark confinement is still far from having been proved

@ Possible remedy for the argument for t*? (Tomboulis,
private communication)



Conclusion

THIS IS THE QUARK CONFINEMENT!

& high-energy
electran on
collizion course with ..

hS.

.. a quark, confined
in the proton,

from http://nobelprize.org/nobel_prizes/physics/laureates/2004/illpres/
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Character expansion

0i0/2 0
0 efi9/2) € SU(2)

_sin (2(2f+ 1))
sin (50)

@ SU(2) character: u= (

j=0,1/2,1,3/2,...

@ Decomposition law (DL)

I+]

xi(U)x(U) = Z Txe(U

k=|i—]|
@ Orthonormality ([ dU xo(U) = 1)

/dUX,'(U)Xj(U) = 5,] where /de = /047r g—zsm (;9) X

(This follows from the orthogonality of irreducible representations
J U Ri(U)apRk(UT)eq = %,' ikOadObc)



Character expansion (cont’d)

@ Character expansion of the plaquette action (U: plaquette)
exp (g Try/2 U> = Z diFjx;(U) ad=2j+1
J

= F [1 + Zdeij(U)] = Fofp(U)
J#0

@ Coefficients

1 2
Fi = 5, / dU exp <§Tr1/2 U) xj(U) = B/2,'+1(5)

(B pY 242
9= Thip) @y o) Trd<




Power of the character expansion

@ For 2 adjacent plaquettes

Ql UlJUT |2

@ Integration over U yields

/dU D dFx(Q1U) Y dkFrox(U'Q2) = Y diFf x;(2192)
J k i

@ because

’
/dUXj(Q1 U)xk(U'Qp) = 4 kX (21€22)
/i

(This also follows from the orthogonality of irreducible representations)



Power of the character expansion (cont'd)

@ For a 2-dimensional collection of plaquettes

T

U

L

@ Integrations over internal Up’s yield

Z dj(l_—j)number of pIaquettesz( U)
J



Flow of the MK transformation

@ Coupling constants

o) = (P20 () +

@ RG flow in the (342, 31)-plane

r=1.0
0.1

0

-0.1 -

02+

B+

03+

-0.4 -

05 |

-0.6

I I I
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Flow of the MK transformation (cont’d)

A rough approximation that neglects 3; with j > 1 yields. ..

@ Sufficiently strong couplings always flow to the strong
coupling limit, as long as b?r > 1

pd—2 b2r
51/2(n):4<4ﬁ1/g(n—1)> —0 as n— oo

B=0.5r=0.8

Cj(")




Flow of the MK transformation (cont’d)

@ In the weak coupling region,

d—4 _ _ p-2
b by = u

B /2(n) =~ - B1j2(n—1) —8byInb 54D

@ When r =1, for d = 4, 31, is certainly marginal and
asymptotically free:

by =0.04508--- forb=2

is 97.08% of the right answer, by = 11/2472 = 0.04643 - - -



Flow of the MK transformation (cont’d)

@ When r < 1, the parameter r effectively increases the
dimensionality as d > 4 (lto-Seiler) and this makes 3 >

“irrelevant”: 34 2(n) — oo as n— oo
@ Weak couplings flow toward weak region!

¢i(n) — 1

asn— oo

B=1.6r=0.8

o)

33333337
MmN
OOMRWN=O




@ Suppose that we first set t; = t1+. Then

ZH(B)  Fo(1)Mer WV ZE (o (£)¢(1)})
Zh(B)  Ro(1)Mea I Zy ({ay () ci(1)})

 Ro(1)Med G ZE (Lo (67)¢i(1)}) ZiF (L () 6i(1)})
C Fo(1)Mea AL ZE (Laq () 6i(1)}) Zi({ea () 6i(1)})

@ Since 0 < Z(-) < Z (see Tomboulis, Appendix A §5)

1 ZHp) 1 ZF({ea(t)g()})
2520 < 25 Z({m(t)g)
and thus

1 _ Fo()Mes ORI Zi ({of () (1))

=< <2
2 RN Z (fan (81)(1)})




t and t* (cont'd)

@ Taking the logarithm

hof (6). 1) — (s (£). )

+ log Z?L({@T(tfr)‘%(ﬂ}) |092 1
IND[log Fo(1) = ZF({ar(7)g(1)}) | log Fo(1) [AD)]

@ Since h(a, t) and Z;" ({acj(1)}) are monotonically
increasing functions of «,

(o (5,87 = h(oa (t), &)
1 Zﬁ({ar(tr)cfm})l _ log2 1

FINTlog Fo() | Z ({an (7)1} | = Tog Fo(1) JAT




t and t* (cont'd)

@ This shows

e (). - o). 6] < 0 (1)

@ Thus, if
dh(aq(t),t)
dt
as shown in Tomboulis, Appendix B (the parameter r < 1 is
introduced to guarantees this), there always exists, for
asymptotically large |A|, t; = £ + O(1/|A()]) such that

#0 as |\| — o

h(ay (), 87) = h(a1 (t). )

@ Repeat this procedure fromm=1tom=n



Various properties of the interpolation

@ Using
Zy 1 = Fo()" OO Z,({an(1)ci(m)})
@ We have
doun(t) A log Fo(n ) oh
a I|AM)|log Fo(n) + 2 log Z, Ot a=an(t) =
and, equivalently,
dh(aggt), H_ _dogt(t) - Io19 = );a log Z, o <0

where the argument of the partition functions is {ac;(n)}
and we have used ¢’ < ap(t) < 1 — 4 (Tomboulis, Appendix B)



Various properties of the interpolation (cont’d)

@ ltis also straightforward to see that

oW\ 1) | SN log Fo(n) + A log Z;f .| on
ot | AWM log Fo(n) + 2 log Z, ot

a=an(t)

where the argument of all the partition functions is {ac;(n)}
and

V(N 1) 1

ox  |AM|log Fy(n)
x [log Z{ ({an(t)g(n)}) —log Z ({aif (&) (m)})




Various properties of the interpolation (cont’d)

@ For n>> 1, using the result of the cluster expansion,

) ) N
% log(Zn) — £ log(Z;")

= LD exp(—p(mL L)

therefore (since 0h/ot < 0)

AW\, 1)
at

<0 for0< A< 1



Various properties of the interpolation (cont’d)

@ Now, as a possible case, assume
an(ty) > o™ (ty)
then since oh/da > 0
h(an(ty), ty) > hlegq (t7). t7)
This, combined with
h(aq (t7), 1) = h(an(tn), tn)
and dh(an(t),t)/dt < 0, implies
th > tF
Finally, since dan(t)/dt > 0,

an(t) > an(ty)  fort >ty > tf



Various properties of the interpolation (cont’d)

@ For this case, therefore

V(N t)

3N >0 fort > t, >t

and

JOVJON
/"’A 8\U/8t L)

will give t(\) > t,for A >0



Various properties of the interpolation (cont’d)

@ As a second case, assume
an(ty) < o™ (ty)

then since oh/da > 0

h(an(ty), ty) < bl (t7). t7)
This, combined with

h(aq (t7), 1) = h(an(tn), tn)
and dh(an(t),t)/dt < 0, implies

th < tF

Finally, since dan(t)/dt > 0,

an(t) < ap(th)  fort<t,<tf



Various properties of the interpolation (cont’d)

@ For this case, therefore

V(N t)

3N <0 fort <t,<th

and

JOVJON
/"’A 8\U/8t L)

will give t(\) < t,for A >0
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