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1 Introduction : PP-Wave as a Limit of AdS5 × S5

● AdS/CFT Correspondence : One of the Most Profound Structures in String Theory

Type IIB Superstring Theory on AdS5 × S5

m Duality

4-Dim. N =4 SU(N) Super Yang-Mills Theory (CFT)

3 Parameter Correspondence

g2
YMN = 4πgsN = R4/α′ 2

★ Balance Between RR-Flux N and Curvature R ∼ Large RR-Flux is Crucial.

● Green-Schwarz Action on AdS5 × S5 with RR-Flux Has Been Constructed.

Bosonic Part1 is a Non-Linear Sigma Model on SO(2,4)
SO(1,4)

× SO(6)
SO(5)

.

• Theory is Highly Non-Linear =⇒ Hard to Solve.

• In General, Theory Becomes “Massive” =⇒ Left and Right Moving Sectors Couple.

1Fermionic part is Much More Complicated.



● PP-wave as a Limit of AdS5 × S5 ⇐= Zoom-In of a Null Geodesics
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PP-wave Geometry：ds2 = 2 dx+dx− − µ2x2
I dx+2 + dx2

I (I = 1 ∼ 8),

RR-flux： F+1234 = F+5678 = µ
2

★ Non-Trivial Curvature and RR-flux is Still There !

The Green-Schwarz Action in Light-Cone Gauge =⇒ Massive Free Field Theory. (Metsaev)

However, ANY String Theory Should Have Massless Conformally Inv. Description.

How Can We Reconcile the “Massive” Picture with Powerful CFT Description ?
=⇒ We Try to Formulate and Quantize the String Theory as EXACT CFT.



2 Classical Analysis of Superstring in the PP-wave
Green-Schwarz Action in a Conformally Inv. Gauge gij = ηij :

LGS = LKin + LWZ,

LKin = −
T

2
ηij

(
2∂iX

+∂jX
− + ∂iX

I∂jX
I −µ2XI2∂iX

+∂jX
+︸ ︷︷ ︸

Coupling to Curvature

)
+i T ηij

(
∂iX

+
(
θ1∂jθ

1 + θ2∂jθ
2
)
+2µ∂iX

+∂jX
+θ1θ2︸ ︷︷ ︸

Coupling to RR-Flux

)
,

LWZ = −i
√

2Tεij∂iX
+

(
θ1∂jθ

1 − θ2∂jθ
2
)
,

where the Fermionic (Semi) Light-Cone Gauge γ+θA = 0 (A = 1, 2) is Imposed2.

• Cubic Couplings Exist in the Fermionic Part Even for the Flat Case.

• Non-Trivial Curvature and Background RR-Flux Give Quartic Couplings.

3 This Becomes FREE MASSIVE Theory in the Full LC Gauge ∂0X+ ∝ p+.

2To Fix κ-Symmetry. γi is SO(8) Gamma Matrices and γ+ is a Chiral Projection Op. on SO(8) Spinors.



In this Semi-LC Conformal Gauge, Action and Eq. of Motion are Still Non-Linear.

However, We can Exactly Obtain General Solutions for All the Fields.

• For X+, ∂+∂−X+ = 0 : X+(σ+, σ−) = X+
L (σ+) + X+

R (σ−).

• For Transverse XI , ∂+∂−XI + µ2
(
∂+X+

L ∂−X+
R

)
XI = 0.

3 General 2π-Periodic Soln. in σ

X I(t, σ) =
∑
n

(aI
nun + ãI

nũn) ,

un = e−i(λ+
n X+

R +λ−
n X+

L ) , ũn = e−i(λ−
n X+

R +λ+
n X+

L ) .

Here aI
n and ãI

n are Constant Coefficients and λ±
n are Given by3

λ±
n =

1

2`2
sp+

(ωn ± n) , ωn =
n

|n|

√
n2 + M2 (n 6= 0).

3In Fact, Zero-Mode Parts are Separately Treated, But Similar.



• For Fermionic Fields θA, ∂+∂−θA + µ2
(
∂+X+

L ∂−X+
R

)
θA = 0.

ϑA(t, σ) =
∑
n

(
bA

n un + b̃A
n ũn

)
(bn and b̃n are Grassmann Coeff.).

• For X−, Introducing (ρ+, ρ−) ≡ (X+
L (σ+), X+

R (σ−)) and ∂̃± ≡ ∂
∂ρ±

,

∂̃+∂̃−X− = µ2X I(∂̃+ + ∂̃−)X I + i
√

2µ(ϑ1∂̃+ϑ2 − ϑ2∂̃−ϑ1) .

Since the RHS are Known Fn., This Eq. Can be Solved by the Inverse of the Laplacian.

★ All Soln. of “Physical” Fields are Composed of Mode Fn. un and ũn.

3 Mode Fn. un and ũn Both Consist of the Product of Left- and Right- Moving Fn.4

Note : Completeness Relations for the Mode Fn. un and ũn are NOT Known, at Present.

★ The Soln. of Eq. of Motions are Inseparable Functions of σ+ and σ−.

How can we Construct PURELY Left (or Right) Moving Virasoro Generator ?

4Cf.: For Free Boson, T+ ∼ 1
2

`

∂+φL(σ+)
´2

.



● Virasoro Generators T± in terms of the Classical Solutions.

T+

T
=

1

2
∂+X+∂+X− +

1

4

(
∂+XI

)2 −
i

√
2

∂+X+
(
θ1∂+θ1 + θ2∂+θ2

)
−

1

4

(
∂+X+

)2 (
µ2X2

I + 4
√

2 i µ θ1θ2
)

.

Using EoM for X+ and θA, with the ρ± variables, T+ Reduces to

T+

T
=

1

2
(∂+ρ+)2

[
∂̃+X −+

1

2

(
(∂̃+XI)2 − µ2X 2

I

)
−i

√
2(ϑ2∂̃+ϑ2 − ϑ1∂̃+ϑ1)

]
.

Also, the Once-Integrated EoM for X− Becomes

∂̃+X − = −
1

2

(
(∂̃+XI)2 − µ2X 2

I

)
+i

√
2(ϑ2∂̃+ϑ2 − ϑ1∂̃+ϑ1) + f+(σ+) ,

where f+(σ+) is an Arbitrary Fn. of σ+ (“Integration Constant”).

Substituting the Solutions of X −,

T+ =
T

2
(∂+X+

L )2f+(σ+)
(

Similarly, T− =
T

2
(∂−X+

R )2f−(σ−)
)

.

★ T+ is a “Chiral” Fn. Only of σ+ =⇒ Completely Different from Flat (µ=0) Case.



3 Phase Space Formalism and Quantum Virasoro Algebra

Bosonic Momenta： P + = T∂0X+, P I = T∂0XI ,

P − = T
[
∂0X−− ∂0X+

(
µ2X2

I + 4
√

2iµθ1θ2
)

− 2
√

2i
(
θ1∂+θ1 + θ2∂+θ2

)]
Fermionic Momenta： p1 = i

√
2T (∂0X+ − ∂1X+)θ1 = iπ+1θ1 ,

p2 = i
√

2T (∂0X+ + ∂1X+)θ2 = iπ+2θ2 ,

where π+1 ≡
√

2(P + − T∂1X+) , π+2 ≡
√

2(P + + T∂1X+) .

● Poisson-Dirac Bracket for Basic Canonical Pairs (at Equal-Time){
XI(σ), P J(σ′)

}
D

= δIJδ(σ − σ′),
{
X±(σ), P ∓(σ′)

}
D

= δ(σ − σ′){
ΘA

a (σ), ΘB
b

}
D

= iδABδabδ(σ − σ′),

with the 2nd Class Constraints dA ≡ pA − iπ+AθA = 0.

3 Here, We Have Defined New Canonical Fields ΘA
a ≡

√
2π+A θA

a (with π+A
0 6= 0).



● In Principle, We Can Obtain the Commutators for Modes ( an, ãn, bn, b̃n ).

=⇒ We Do NOT Know the Completeness for un etc., and Can NOT Obtain the Brackets.

● Phase-Space Fomulation for Canonical Quantization

Usually, Equal-Time Commutator is NOT Sufficient for Solving the Dynamics.

3 Soln. of EoM + Brackets for t-Indep. Modes︸ ︷︷ ︸
Not Obtained Here

=⇒ Correlators at Unequal-Times.

However, String Theory in Conformal Gauge Has a LARGE Symmetry

Including the HAMILTONIAN

⇓
★ Representation Theory of the Symmetry Should Also Know the Dynamics !

Physical Spectrum ⇐= (Gauge) Constraints

Dynamics ⇐= Construction of Physical Primary Fields

★ In This Strategy, Only the Equal-Time Commutator is Sufficient for the Dynamics.



Introduce Dimensionless Fields Φ? ≡{A, B, S} and a Dimensionless Const. µ̂ :

X? =
1

√
2πT

A? , P ? =

√
T

2π
B? , Π̃? =

1
√

2
(B + ∂1A)? ,

Π? =
1

√
2
(B − ∂1A)? , ΘA = −

i
√

2π
SA , µ̂ =

µ
√

2πT
.

Dirac Brackets for the Fourier Modes Φ?(σ) =
∑

n Φ?
ne−inσ (at t = 0)5 :{

A±
m, B∓

n

}
D

= δm+n,0 ,
{
AI

m, BJ
n

}
D

= δIJδm+n,0 ,{
SA

a,m, SB
b,n

}
D

= −i δABδabδm+n,0 .

One Can Obtain the Classical Virasoro Alg. in terms of These Fields :

{T±(σ, t), T±(σ′, t)}D = ±2T±(σ, t)δ′(σ − σ′) ± ∂σT±(σ, t)δ(σ − σ′), with

T+ =
1

2π

(
Π̃+Π̃− +

1

2
Π̃2

I +
i

2
S2∂σS2 +

µ̂2

2
Π̃+Π+A2

I −
iµ̂
√

2

√
Π̃+Π+S1S2

)
5Relation between the Fourier Modes and (an , bn ) Modes are Quite Complicated.



● Quantization : Replace Poisson-Dirac Brackets with Quantum Commutators at t = 0.{
AI

m, BJ
n

}
D

=⇒
[
AI

m, BJ
n

]
= iδIJδm+n,0.

Quantum Virasoro Generator =⇒ Fourier Modes of T+(σ) =
∑

n L+
n e−inσ (t=0).

Quantum Op. L+
n Requires Ordering =⇒ ★ Phase-Space Normal Ordering

★ A?
n (n ≥ 1), B?

n (n ≥ 0), SA
n (n ≥ 1) as “Annihilation Operators”.

Quantum Operator Anomalies Appear through the Calc. (Different from Free CFT)

CB =
1

(2π)2

([
1

2
Π̃2

I(σ),
µ̂2

2
Π̃+Π+A2

I(σ
′)

]
− (σ ↔ σ′)

)
CF =

1

(2π)2

[
iµ̂
√

2

√
Π̃+Π+S1S2(σ),

iµ̂
√

2

√
Π̃+Π+S1S2(σ′)

]
CB = −CF = −

iµ̂2

π

(
2Π̃+Π+δ′(σ − σ′) + ∂σ(Π̃+Π+)δ(σ − σ′)

)
.

★ These Two Operator Anomalies Exactly Cancel Out ! 6

6Other (Natural) Orderings Suffer from Operator Anomalies.



4 BRS Quantization and Physical States
BRS Quantization Requires NILPOTENT BRS Charge QB

★ Virasoro Generator with Central Charge 26 is Needed.

=⇒ Quantum Correction Term ∆T+ = − 1
2π

∂2
σ ln Π̃+ should be Added to T+.

From the Virasoro Generator, QB =
∑

n

(
c̃−nL+

n − 1
2

∑
m(m − n)c̃−mc̃−nb̃m+n

)
.

● Physical States as Q̃B -Cohomology

Decomposition Q̃B = Q̃−1 + Q̃0 + Q̃n≥1 by Light-Cone No. Π̃±
n → ±1,

where, Q̃−1 = −p+
∑

n c̃nΠ̃−
−n.

One Can Show, in the Same Way as the Free Bosonic String,

Isomorphism： Q̃B -Cohomology ' Q̃−1-Cohomology ' HT with L+
0 |Ψ〉 = 0.

Here, HT is the Transverse Hilbert Space Dropped All the Non-Zero Modes of (b̃, c̃, Π̃±).

★ Combining QB -Cohomology, the Physical States are |Ψ〉 ∈ HT with

the Constraints H = L+
0 + L−

0 = 0 and P = L+
0 − L−

0 = 0.



● Hamiltonian in the Transverse Hilbert Space HT w/o Unphysical Non-Zero Modes

H = HB + HF ,

HB = α′p+p− +
1

2

∑
(BI

−nBI
n + (n2 + M2)AI

−nAI
n) ,

HF =
1

2

∑
(−nS1

−nS1
n + nS2

−nS2
n − iMS1

−nS2
n + iMS2

−nS1
n) .

3 This Hamiltonian Describes a Free “Massive” Field Theory.

● Diagonalization of H Leads to the “Physical” Hamiltonian (Re-Normal Ordered) :

H = HLC = α′p+p− + αI
0

†
αI

0 +
∑
n≥1

(αI
−nαI

n + α̃I
−nα̃I

n)

+MS†
0S0 +

∑
n≥1

ωn(S†
nSn + S̃†

nS̃n) ,

where [α̃m, α̃n] = [αm, αn] = ωnδm+n,0 , [α̃m, αn] = 0 ,{
S̃a,m, S̃†

b,n

}
=

{
Sa,m, S†

b,n

}
= δabδm,n ,

{
Sa,m, S̃†

b,n

}
= 0 .

★ This Correctly Reproduces the Light-Cone Hamiltonian Obtained in the LC-Gauge.

Note : L+
0 − L−

0 = 0 Also Gives the Same “Level-Matching” Condition as the LC-Gauge.



5 Summary and Future Problems
● Summary

• We Have Investigated Both the Classical and Quantum Aspects of Superstring Theory

in the PP-Wave Background with a Conformally Invariant Gauge as an Exact CFT.

• In Particular, Two Commuting Virasoro Generators are Constructed Quantum Mechani-

cally from the Action with Non-linear Coupling Between Left and Right-Moving Degrees.

• We Have Correctly Reproduced the Light-Cone Gauge Spectrum as the Physical States

Defined by the BRS-Cohomology.

● Future Problems

• Analysis of Global Symmetries： Realization of the PP-Wave Superalgebra.

• Construction of (1, 1) Primary Fields and Calculation of Correlation Fn.

• Application to the BMN-Correspondence.

• Application to the Phase-Space Formalism to Superstring on AdS5 × S5.

• Modular Invariance, Boundary States and D-Branes, etc.


