Structures on Doubled Geometry

Cecilia Albertsson (YITP, Kyoto U) arXiv:0907.nnnn [hep-th]

Workshop on Field Theory and String Theory YITP 7/7 2009

PLAN

The Problem: T-duality
Doubled Geometry
Generalised Geometry
Comparison

T-DUALITY

[GG: Hitchin '02; DG: Hull '04]

T-duality on the internal space!

A symmetry of the compactified theory

T-duality group O(d,d;Z)

toroidal compactifications

T-duality or

on the internal space!

Doubled Geometry

to describe the internal space!

DOUBLED GEOMETRY

ABSTRACT description of the internal space!

Doubled Geometry

describing the internal space!

with an O(d,d) structure imposed by a *self-duality constraint*:

T-duality implemented in Doubled Geometry (describing the internal space!)

Sigma model defined on doubled geometry:

 $S = \frac{1}{4} \int M_{mn} dX^m \wedge {}^*dX^n + \frac{1}{4} \frac{1}{3} \int H_{mnr} dX^m \wedge dX^n \wedge dX^r$

where $X^m = \{X^{\mu}, \widetilde{X}^{\mu}\}$

Mutually dual models are found by:

- choosing different coordinate frames
 T-duality group is in diffeom group: O(d,d) ⊂ GL(2d)

- eliminating half of d.o.f, imposing self-duality: $dX = {}^{*}d\widetilde{X}$

Structures on Doubled Geometry

$[T_{a},T_{b}]=t_{ab}{}^{c}T_{c}$	Lie algebra structure on Г\G
L	neutral metric: signature (d,d)
\mathcal{M}	positive definite metric
$S\equiv\Pi-\widetilde{\Pi}$	almost product structure $\mathcal{P} = L^{-1} \mathcal{M}^* \mathcal{C}$
$T \equiv L^{\text{-1}} \ \mathcal{M}$	almost product structure
$J \equiv TS$	almost complex structure

S, T, J satisfy a para-quaternion algebra: J = TS = -ST $-J^2 = S^2 = T^2 = 1$

Metric compatibility

L(SX,SY) = -L(X,Y)

L(TX,TY) = L(X,Y)

almost para-Hermitian structure

pseudo-Riemannian almost product structure

 $\mathsf{L}(J\mathsf{X},J\mathsf{Y})=-\mathsf{L}(\mathsf{X},\mathsf{Y})$

almost complex anti-Hermitian structure

 $\mathcal{M}(\mathsf{SX},\mathsf{SY}) = \mathcal{M}(\mathsf{X},\mathsf{Y}) \quad \text{Riemannian almost product structure}$ $\mathcal{M}(\mathsf{TX},\mathsf{TY}) = \mathcal{M}(\mathsf{X},\mathsf{Y}) \quad \text{Riemannian almost product structure}$ $\mathcal{M}(J\mathsf{X},J\mathsf{Y}) = \mathcal{M}(\mathsf{X},\mathsf{Y}) \quad \text{almost Hermitian structure}$

Doubled Geometry is a neutral bypercomplex manifold

* Neutral metric L

- * Three structures S, T, J satisfying para-quaternion algebra
- The metrics L and M are twin metrics with respect to T

GENERALISED GEOMETRY

Cotangent space at point $p \in M$

Tangent space at point $p \in M$

 $T^*{}_{\rho}(M)$ spanned by cotangent vectors $\xi \in T^*{}_{\rho}(M)$, e.g. $\{dx^{\mu}\}$

 $T_{\rho}(M)$ spanned by tangent vectors $v \in T_{\rho}(M)$, e.g. $\{\partial/\partial x^{\mu}\}$

Structures on Generalised Geometry

- Lneutral metric: signature (d,d) \mathcal{M} positive definite metric
- $S \equiv \prod \widetilde{\prod}$ generalised almost product structure (local split into tangent and cotangent space)
- $T \equiv L^{-1} \mathcal{M}$ almost product structure

Structure group O(d,d)

COMPARISON

Doubled Geometry

Almost product structures S and T

Neutral metric L and pos def metric \mathcal{M}

T-duality group naturally encoded

Generalised Geometry

Almost product structures S and T

Neutral metric L and pos def metric \mathcal{M}

T-duality group naturally encoded

COMPARISON

Doubled Geometry

Space M is doubled

 $\mathsf{T}(\mathsf{M})\oplus\mathsf{T}(\widetilde{\mathsf{M}})$

O(d,d) transition functions

Neutral bypercomplex!

Generalised Geometry

Space M not doubled

 $T(M) \oplus T^*(M)$

GL(d) transition functions

 $T(M) \oplus T(\widetilde{M})$

 $T(M) \oplus T^*(M)$

SUMMARY

- DG is a neutral hypercomplex manifold

- Although DG and GG structures are defined on different spaces, there are many similarities

- DG appears to be more restricted than GG, but less restricted than Gen Complex Geometry

The End