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Sugino’s lattice formulation of 2D N = (2, 2) SYM (we
assume G = SU(k))

Lattice action (fermion: ΨT ≡ (ψ0, ψ1, χ, η/2) ⇔ (Q(0),Q(1), Q̃,Q))

SLAT
2DSYM

= Q
1

a2g2

∑
x

tr
[
−iχ(x)Φ̂(x) + χ(x)H(x) +

1
4
η(x)[φ(x), φ̄(x)]

− i
1∑

µ=0

ψµ(x)
(

Uµ(x)φ̄(x + aµ̂)Uµ(x)−1 − φ̄(x)
)]
,

where the lattice field strength Φ̂(x) (⇔ 2F01) is given (basically)
by the plaquette

Φ̂(x) ' −iU0(x)U1(x + a0̂)U0(x + a1̂)−1U1(x)−1 + h.c.
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Sugino’s lattice formulation

Lattice Q-transformation

QUµ(x) = iψµ(x)Uµ(x),

Qψµ(x) = iψµ(x)ψµ(x)− i
(
φ(x)− Uµ(x)φ(x + aµ̂)Uµ(x)−1

)
,

Qφ(x) = 0,
Qφ̄(x) = η(x), Qη(x) =

[
φ(x), φ̄(x)

]
,

Qχ(x) = H(x), QH(x) = [φ(x), χ(x)]

is nilpotent on the lattice

Q2 = δφ ' 0

Q is a manifest lattice symmetry, QSLAT
2DSYM = 0

Hiroshi Suzuki (RIKEN) Supersymmetry restoration. . . July 10, 2009 @ YITP 3 / 19



Restoration of full SUSY?

The above lattice formulation possesses a manifest fermionic
symmetry Q
Other manifest (bosonic) symmetries: U(1)A symmetry,

Ψ(x) → exp (αΓ2Γ3) Ψ(x),

φ(x) → exp (2iα)φ(x), φ̄(x) → exp (−2iα) φ̄(x),

“Reflection” symmetry, x → x̃ ≡ (x1, x0) and

U0(x) → U1(x̃), U1(x) → U0(x̃), etc.

But how about other Q(0), Q(1), Q̃, full SUSY?

Full SUSY is restored in the continuum limit a → 0? (perturbative
argument on the basis of the effective action: Kaplan et al.,
Sugino)
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What is the best characterization of SUSY restoration?
Scalar 2-point function? (⇐ not gauge invariant)
Fermion-boson degeneracy? (⇐ cannot be distinguished from the
spontaneous SUSY breaking)
(local) SUSY Ward-Takahashi (WT) identity would be the best
In the target continuum theory, we expect

∂µ 〈sµ(x)O(y1, . . . , yn)〉 sµ: supercurrent

=
µ2

g2 〈f (x)O(y1, . . . , yn)〉 − i
δ

δε(x)
〈O(y1, . . . , yn)〉

Here, we introduced a SUSY breaking scalar mass term

Smass =
µ2

g2

∫
d2x tr

[
φ̄φ

]
, f ≡ 4iC

(
Γ↑ tr [φΨ] + Γ↓ tr

[
φ̄Ψ

])
,

where
Γ↑,↓ ≡

i
2
(Γ2 ∓ iΓ3)

Hiroshi Suzuki (RIKEN) Supersymmetry restoration. . . July 10, 2009 @ YITP 5 / 19



SUSY WT identity on the lattice

We can show that, on the lattice

∂∗µ 〈sµ(x)O(y1, . . . , yn)〉

=
µ2

g2 〈f (x)O(y1, . . . , yn)〉 − i
1
a2

δ

δε(x)
〈O(y1, . . . , yn)〉

+ 〈B(x)O(y1, . . . , yn)〉

B(x) is O(a), gauge invariant, fermionic and mass dimension 5/2
Under U(1)A: B(x) → exp(−αΓ2Γ3)B(x)

Under the reflection: B(x) → RB(x̃) (R ≡ 1
2(i + Γ5)(Γ0 − Γ1))
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Breaking term B(x)

When O is a product of elementary fields,

B(x)
a→0−−−→ c↑CΓ↑ tr [φΨ] + c↓CΓ↓ tr

[
φ̄Ψ

]
,

Further assuming that SUSY has no intrinsic anomaly (i.e., the
breaking can be removed by local counterterms),

B(x)
a→0−−−→ cC

(
Γ↑ tr [φΨ] + Γ↓ tr

[
φ̄Ψ

])
.

However, because of the lattice Q-symmetry

B(x) =


∗
∗
∗
0

 ⇒ c = 0 ⇒ B(x)
a→0−−−→ 0
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SUSY WT identity
When O is a product of elementary fields, in the continuum limit,

∂µ 〈sµ(x)O(y1, . . . , yn)〉

=
µ2

g2 〈f (x)O(y1, . . . , yn)〉 − i
1
a2

δ

δε(x)
〈O(y1, . . . , yn)〉

sµ(x) is a correctly normalized supercurrent that generates SUSY
transf. on elementary fields
Definition the supercurrent is arbitrary as long as
s′µ(x) = sµ(x) + O(a)

Even when O contains composite operators, if x 6= yi ,
I B(x)

a→0−−−→ 0
I Definition the supercurrent is again arbitrary

This is precisely the case studied in Kanamori-Suzuki, in which

O(y) = fν(y) ≡ −2i
1
g2 Γν

(
Γ↑ tr [φΨ] + Γ↓ tr

[
φ̄Ψ

])
Hiroshi Suzuki (RIKEN) Supersymmetry restoration. . . July 10, 2009 @ YITP 8 / 19



Nonperturbative check (Kanamori, H.S., NPB 811 (2009))

Continuum limit of the ratio
∂µ

〈
(s′µ)i(x)(f0)i(y)

〉
〈(f )i(x)(f0)i(y)〉

a→0−−−→ µ2

g2 for x 6= y?
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√

2. i = 1 (+),
i = 2 (×), i = 3 (�), i = 4 (�)

Hiroshi Suzuki (RIKEN) Supersymmetry restoration. . . July 10, 2009 @ YITP 9 / 19



SUSY current algebra and hamiltonian density

When O is a supercurrent itself, SUSY WT identity provides a
SUSY current algebra among correctly normalized current
operators
In particular, for µ2 = 0,

∂∗µ
〈
(sµ)i=4 (x)

(
s′0

)
i=1 (y)

〉
= i

1
a2 δx ,y

〈
Q

(
s′0

)
i=1 (x)

〉
≡ 2 〈H(x)〉

even for a 6= 0
This is precisely the prescription for the hamiltonian density
advocated by Kanamori-Sugino-Suzuki in the context of the
dynamical SUSY breaking
provides the Nambu-Goldstone theorem for the spontaneous
SUSY breaking
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Vacuum energy density (Kanamori, PRD 79 (2009))

can be obtained from the zero temperature limit β →∞ of 〈H〉

E0/g2 = 0.09± 0.09(sys)+0.10
−0.08 (stat)
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Dynamical spontaneous SUSY breaking in this system
(Hori-Tong) is unlikely. . .
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Less ambiguous confirmation of SUSY WT identity?

Since we have a small parameter,

ag � 1

we may use lattice Perturbation Theory (PT)
Free from Monte Carlo errors. Periodic BC case
However,

I PT in infinite volume L = ∞ generally suffers from infrared
divergences

I Constant (zero-momentum) modes do not allow perturbative
expansion

Onogi and Takimi (PRD 72 (2005)): scalar 2-point function in
lattice model by Kaplan et al.

I Perturbative integration over non-zero momentum modes
I Nonperturbative numerical integration over constant modes
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Semi-perturbative analysis (periodic BC)
Finite box with the size L = Na (N: 1-dimensional number of
lattice points)
Gauge potential

Uµ(x) = exp (iAµ(x))

Momentum decomposition on a finite lattice

Aµ(x) =
∑

k

eikx/a Ãµ(k),

φ(x) =
∑

k

eikx/a φ̃(k), φ̄(x) =
∑

k

eikx/a ˜̄φ(k),

Ψ(x) =
∑

k

eikx/a Ψ̃(k),

where
kµ ≡

2πnµ

N
, nµ = 0,1,2, . . . ,N − 1
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Semi-perturbative analysis of SUSY WT identity
Constant modes are special, because

SLAT
2DSYM =

N2

a2g2 tr
[
−1

2
[Ãµ(0), Ãν(0)]2 + Ψ̃(0)T CΓµi[Ãµ(0), Ψ̃(0)] + · · ·

]
Therefore,

�

= Ψ̃(0) = O((ag)3/4)

�

= Ãµ(0) or φ̃(0) = O((ag)1/2)

and modifies a naive order counting
The lowest nontrivial order for the SUSY WT identity

∂µ 〈sµ(x)fν(y)〉 ?
=
µ2

g2 〈f (x)fν(y)〉 for x 6= y

is O((ag)3/2) and, schematically,

∂µ

�
=
µ2

g2
�

+ C
�
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The blob denotes the scalar 1-loop self-energy

C ≡
�

=

�
+

�
+

�
+

�
A somewhat lengthy one-loop calculation yields (λ: the gauge
parameter)

C = k
2

N2

∑
(n0,n1) 6=(0,0)

[
1
2

(
1 +

1
λ

)
1
k̂2

+
1
2

(
1− 1

λ

)
1

k̂2 + a2µ2
− 1

k̂2

]
+O(a2)

where

k̊2 ≡
1∑

µ=0

(
k̊µ

)2
, k̂2 ≡

1∑
µ=0

(
k̂µ

)2
, k̊µ ≡ sin kµ, k̂µ ≡ 2 sin

kµ

2

We may further neglect a2µ2 in the denominator and then

C = 0

and shows the SUSY WT identity in the first nontrivial order
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Caveat on PT in 2D gauge theory
In the continuum limit, we have ag � 1
Then, everything in the continuum limit can be studied by PT?

No!

There is a hidden parameter N, the number of lattice points

ag � 1, but Lg = N × ag is not necessarily small

It turns out that (when there are no other high energy scales)

PT is an asymptotic expansion w.r.t. Lg, not simply ag

and reliable only for Lg � 1, small physical volume (⇔ infrared
divergence in L = ∞)
If one is interested in low energy physics in large volume, PT is
useless. Instead use exact solution, Monte Carlo simulation, etc.
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Summary

We
clarified the implication of SUSY WT identity
argued the restoration of SUSY WT identity in formal PT
confirmed the SUSY WT identity in the first nontrivial order by
using a semi-perturbative analysis (a small volume expansion)

Similar analysis is called for 4D SUSY gauge theories. . .
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2D N = (2, 2) SYM (we assume G = SU(k))
Continuum action (dimensional reduction of 4D N = 1 SYM to 2D)

S2DSYM =
1
g2

∫
d2x tr

[
1
2

FMNFMN + ΨT CΓMDMΨ + H̃2
]

SUSY

δAM = iεT CΓMΨ, δΨ =
i
2

FMNΓMΓNε+ iH̃Γ5ε

δH̃ = −iεT CΓ5ΓMDMΨ

We set Γ0 =

„
−iσ1 0

0 iσ1

«
, Γ1 =

„
iσ3 0
0 −iσ3

«
, Γ2 =

„
0 −i
−i 0

«
, Γ3 = C =

„
0 1
−1 0

«

ΨT ≡ (ψ0, ψ1, χ, η/2), εT ≡ −(ε(0), ε(1), ε̃, ε),

and first focus on a particular fermionic transf. Q

δ ≡ ε(0)Q(0) + ε(1)Q(1) + ε̃Q̃ + εQ
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2D N = (2, 2) SYM
Q-transformation

QAµ = ψµ, Qψµ = iDµφ,

Qφ = 0,
Qφ̄ = η, Qη = [φ, φ̄],

Qχ = H, QH = [φ, χ],

where

φ ≡ A2 + iA3, φ̄ = A2 − iA3, H ≡ H̃ + iF01,

is nilpotent

Q2 = δφ ' 0 on gauge invariant combinations

δφ: an infinitesimal gauge transformation with the parameter φ
Continuum action is moreover Q-exact

S2DSYM = Q
1
g2

∫
d2x tr

[
−2iχF01 + χH +

1
4
η[φ, φ̄]− iψµDµφ̄

]
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