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1. Introduction

Casimir Energy of 4D Electromagnetism

Harmonic Oscillator (w : frequency)
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w —— > F(w): energy density operator
e Y — —> W(w,3): Weight function, Wien's damping factor
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Figure 1: Graph of Planck’s radiation formula.
P(B, k) = (C%)S%k?’/(eﬁk —1) (1<B<2, 0.01 <k <10).




Figure 2: Regularized Flat Geometry, Appelquist and Chodos (1983)
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5D Electromagnetism on the flat geometry
The extra space is periodic (periodicity 21) and Zs-parity

dszznwdaz“daz”eryz , —oco<zrhy<oo , y—y+2, y——-y ,
(M) = diag(—1,1,1,1) ,(XY) = (X! =2, X° = y) = (z,y) ,
M,N =0,1,2,3,5; u,v=0,1,2,3. (3)

The Casimir energy

272 A l
Ecas(A, 1) = dp dy p°W (p,y)F (P, :
Cas(A; 1) (2ﬂ)4/1/l p/M y "W (D, y)F (D, y)

/A - —3cosh k(2y — 1) — 5 cosh kl
p

F(p,y)=F (p.y) +4Ft(5,y) = | dk )
(p,v) (p,y) (p,vy) 2 sinh (k)

(4)



A the 4D-momentum cutoff; W (p, y) the weight function
1) Un-weighted case: W =1

Un-restricted integral region :

1
Ecas(A1) = 5 [—0.12491A° — (1.41,0.706, 0.353) x 10~° [A°In(IA)]

Randall-Schwartz integral region :

1
EES, = —[—0.0894 A*] . (5)

ST

2) Weighted case

B Al =



—2.5174 + (19.5,11.6,6.68) x 104

\
(W7: elliptic, Wa: hyperbolic, Wg: reciprocal).
The renormalization of the compactification size .

8%

«
B Al = — (1 — 4cln(IA)) = A

————— > attractive Casimir force

¢ Al: the normalization factor O c: pure number ' F-func of [

[ 2504 + (—0.142,1.09,1.13) x 1074208 for 11, — (1/N,)e~ (/PP ~(1/2)v*/
\ —6.04 X 10_2%4 for Wy = (1/Ny)e Y
n(iA) for Wy = (1/Ng)e~ (/2@ +1/y?)



Figure 3: Regularized Warped Geometry
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2. Heat-Kernel Approach and Position/Momentum
Propagator

W 5 o {T0(2)Ko(p2) F Ko(2)o(52) HIo(2)Ko(52) F Ko(2)Io(52')}

Gi(z,2)=F—==22 5’ Z D) T (2
p(%:2) = F Io(#)Ko(5) — Ko(£)Io(Z)

A-regularized Casimir energy.

E/C\'qu;(va) :/(27r)4 i
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3. UV and IR Regularization Parameters and
Evaluation of Casimir Energy
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Figure 4: Space of (z,p) for the integration. The hyperbolic curve will be used.
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(A, T)-regularized value of (9). The integral region: rectangle shown in Fig.4.
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Figure 5: Behaviour of (—1/2)p>F~(p, z) (9).
1.0001/w < 2 < 0.9999/T, AT/w < <A .

T =1,0=10%A = 4-10%
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272 AP
EA~(w,T) = (2:)4 x [—0.025()?] ,

which does not depend on w. No log-term. (Note: 0.025 = 1/40. )
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4. UV and IR Regularization Surfaces, Principle of
Minimal Area and Renormalization Flow

One proposal of this was presented by Randall and Schwartz('01).
OO000000000000000000000000

E;M5(w,T) =

212 AP {

A
1. 1072 — 1. 107 41In = 11
o) o 58 x 10 69 x 10" " In } : (11)

w

which is independent of 1" .
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Figure 6: Space of (p,z) for the integration (present proposal).
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Sphere Lattice
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Figure 8: UV regularization surface in 5D coordinate space.
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Figure 9: Numerical Solution of Minimal Surface. Vertical axis: r; Horizontal
axis: z. T =1,w=10%10"* < 2 < 1.0. Upper (B;sg): (1) = 0.8,7'(1) = 1.0,;
Lower (Byy): (1) = 107%,7/(1) = —1.0 . Both curves are Graph Type (ia).
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5. Weight Function and Casimir Energy Evaluation

W d4p 1/T
EL 7V (w,T)= / (27)4 /1 Jo dz W(p,z)FT(p, 2)

~ ©.¢) 2 ©.@) _ _
PH(5.2) = 5(2) [ GGk = s [k GE(e 2y
Examples of W(p,z): W(p,z) =

( (Nl)_1e_(1/2)152/“’2_(1/2)Z2T2 = Wi(p,2), Ny =1.711/87> elliptic suppression
(No)~te P2T/w = Wy(p, 2), No = 2;—2/87T2 hyperbolic suppressionl
(Ng)_le_l/Q(ﬁ2/w2+1/z2T2) = Ws(p,2), Ny =0.4177/87%  reciprocal suppressionl

N\

\
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where G (z, z) are defined in (8). IV; are normalization constants. We show the
shape of the energy integrand (—1/2)p°W1(p, 2)F~(p, z) in Fig.10.
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Figure 10:  Behavior of (—1/2)pW1(p,2)F~(p,z)(elliptic suppression).
A = 20000, w = 5000, T = 1. 1.0001/w < z < 0.9999/T, u= AT/w < p < A.
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We can check the divergence (scaling) behavior of Egazv by numerically
evaluating the (p, z)-integral (12) for the rectangle region of Fig.4.

w
_ECas —

y

%A.1,2{1—|—0.11 ln%—().l() ln%} for Wh
ToA*.0.062 {140.03 In2 —0.08 mA} for W, (13)
\ %4/\.1,6{1%.09 In2—0.10 In&}  for Wy

/\

They give, after normalizing the factor A/T, only the log-divergence.
EX JAT' = —aw* (1 —4cln(A/w) — 4¢' In(A/T)) (14)
This means the 5D Casimir energy is finitely obtained by the ordinary renormal-
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ization of the warp factor w. In the above result of the warped case, the IR
parameter [ in the flat result (7) is replaced by the inverse of the warp factor w.
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6. Meaning of Weight Function and Quantum
Fluctuation of Coordinates and Momenta

In order to most naturally accomplish the above requirement, we can go to a
new step. Namely, we propose to replace the 5D space integral with the weight
W, by the following path-integral. We newly define the Casimir energy in the
higher-dimensional theory as follows.

1/p
Ecas(w, T, \) = / dp/ HDpa(Z)F(ﬁ, 2)
1/A p(1/w)=p(1/T)=1/p q
i 1 1/T 1 1 ﬁ’? ]
_2—0/ 1/w W4Z4253 ﬁ4

X exp + 1 dz

25



[ [[De ()P 2)
= d,o/ Dx*(2)F(—, z
1/A r(1/w)=r(1/T)=p r

Y A
X exp —?‘/ 14 7°/2 + 1 ngz , (15)
a Jiy, wiz

where ;1 = AT /w and the limit AT~! — oo is taken. The string (surface) tension
parameter 1/2a/ is introduced. (Note: Dimension of o/ is [Length]*. ) The
square-bracket ([---])-parts of (15) are —5,Area = —5= [ /detggd*z where
Jab is the induced metric on the 4D surface. F(p, z) is defined in (12) or (9) and
shows the field-quantization of the bulk scalar (EM) fields.

The proposed definition, (15), clearly shows the 4D space-coordinates x“
or the 4D momentum-coordinates p® are quantized (quantum-statistically, not
field-theoretically) with the Euclidean time z and the "area Hamiltonian” A =
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[ +/det gqp d*x. Note that F(p,z) or F(1/r,z) appears, in (15), as the energy
density operator in the quantum statistical system of {p*(2)} or {z%(2)}.

cf. T. Yoneya, 1987, "Duality and Indeterminancy Principle in String Theory" .
PTP103(2000)1081
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7. Discussion and Conclusion

E(‘/y%/[\T_1 = —aw* (1 —4cln(A/w) — 4 In(A/T)) = —a(w,)*
—w 1 —4dcln(A/w) — 4 In(A/T) . (16)

we find the renormalization group function for the warp factor w as

<1l , |d<1 , w.=w(l-cln(A/w)—cIn(A/T))

B(B-function) = 8(31\) In u:: =—c—c . (17)

Y

We should notice that, in the flat geometry case, the IR parameter (extra-space
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size) [ is renormalized. In the present warped case, however, the corresponding
parameter 1’ is not renormalized, but the warp parameter w s renormalized.
Depending on the sign of ¢+ ¢/, the 5D bulk curvature w flows as follows. When
¢+ ¢ >0, the bulk curvature w decreases (increases) as the the measurement
energy scale A increases (decreases). When ¢+ ¢ < 0, the flow goes in the
opposite way.

Application to Cosmological Constant Problem

1 1

—Aobs ~ ~mE~ (1073eV)t | 18
Gy~ GuRE o~ ( ) (18)

where R.,s is the cosmological size (Hubble length), m,, is the neutrino mass.

1 1
My~ = M,.,* ~ (10%8eV)* . 19
G G pl. ~ (10%%eV) (19)
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The famous huge discrepancy factor: \ip/Aops ~ 1024, If we apply the present
approach, we have the warp factor w, and the result (16) strongly suggests the
following choice:

1 -
— M\ = —aqw? , aq : some coefficient |
Gn
1 M
w = /=2 o, ~ 107 %V . (20)

<JL/GN}%COS2 Reos

We succeed in obtaining the finiteness and its gross absolute value of the
cosmological constant. Now we understand that the smallness of the cosmological
constant comes from the renormalization flow for the non asymptotic-free case

(c+ ¢ < 0in (17)).
Further Meaning of the Proposed Casimir Energy
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Geometrical Approach to N Harmonic Oscillators

Figure 11: A path {z*(7)|i = 1,2,---, N} in N(=2)+1 dim space.
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N+1 dim Euclidean space (X*,7); i =1,2,--- N
N
ds® = dT—Z{Z (dXH)22 —|—w4{z V22402 + 2w2{z PHD (dX7)?}(21)
j=1

On a path {z*(7)} , we have the induced metric and the length L is

:/dszfoﬁi(@i)2+w2<wi)2)d7 . (22)
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Taking %L as the Hamiltonian, the free energy F' is

This is the free energy of N HOs.
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Figure 12: N(=2) dim hypersurface in N+1 dim space (X!, X?,..., XV 7).
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Instead of (21), we start from

N
ds? = w4{2 )2y + M{Z PH @) . (e
i=1
On the hypersurface S (X%)2 = r2(7), the induced metric gives us the area

6
Ay :/\/detgideX :/ (wr)VVarz +1 ¥ ar . (25)
0

Taking Ax as the Hamiltonian, the free energy is

e / dp/ _ ,0 HDZCi(T) exp [—%/(wr)N\/m rNldr| . (26)
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Similar to the proposed 5D Casimir energy (Warped case).
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