格子シミュレーションによる 共形場の理論の探索

Etsuko Itou (Kogakuin University) arXiv : 0902.3768 (hep-lat) and Work in progress

QFT2009 @ YITP2009/7/10

Collaborators

- Erek Bilgici a
- Antonino Flachi b
- Masafumi Kurachi c
- ▶ C. –J. David Lin d
- Hideo Matsufuru e
- Hiroshi Ohki b, f
- Tetsuya Onogi g
- Takeshi Yamazaki h and
- Eigo Shintani g

Numerical simulation was carried out on the vector supercomputer NEC SX-8 in YITP, Kyoto University and RCNP, Osaka University

- a : University of Graz
- b : YITP, Kyoto University
- c : Los Alamos National Laboratory
- d : National Chio-Tung University, and National Center for Theoretical Science
- e : KEK
- f : Department of Physics, Kyoto University
- g: Osaka University
- h: Tsukuba University

Plan to talk

- ➢Introduction
- Step scaling
- Wilson loop scheme Twisted Polyakov loop scheme
- ➢simulation (quenched QCD)
- ≻Nf=12 case (TPL scheme)

Introduction

Introduction

- Fixed point • universality, symmetry
- Examples of fixed point

scalar theory (Renormalization group, large-N)

2-dim. NLSM : Gaussian fixed point

minimal series (non-trivial)

3-dim. LSM : IR (Wilson-Fischer) fixed point

gauge theory

4-dim. QCD : Gaussian fixed point

4-dim. large flavor SU(N) theory : Non-trivial IR fixed point??

Previous studies in lattice QCD

 Damgaard, Heller, Krasnitz, Olesen: Phys.Lett.B400:169
 Iwasaki et al: Phys.Rev.D76:034504
 Appelquist, Fleming and Neil: Phys.Rev.Lett.100:171607 arXiv:0901:3766

The running coupling constant in Schrodinger functional scheme.

There is no edivence of fixed point.

There is a flat region in low energy scale.

Practical conditions of the renormalized coupling on the lattice: Luscher et.al.

Nucl.Phys.Proc.Suppl.30:139-148,1993.

- 1. $g^2(L)$ is non-perturbatively defined
- 2. $g^2(L)$ can be computed through numerical simulation
- 3. A perturbative computation is possible. (In principle)

Examples of scheme:

- Schrodinger functional scheme
- Wilson loop scheme : arXiv:0902.3768 (hep-lat)
- Twiseted Polyakov Loop scheme :

no O(a/L) error scheme

The renormalized coupling constant on the lattice and the running coupling constant

renormalized coupling on the lattice:

$$g^2\left(L_0, \frac{a}{L_0}, \beta\right) = Z_R(L_0, \frac{a}{L_0}, \beta)g_0^2$$

Lattice size (L₀) Lattice spacing (a) bare coupling constant $\beta = 2N/g_0^2$

How to take the continuum limit

$$g_R^2\left(\frac{1}{L_0}\right) \equiv \lim_{a \to 0} Z_R\left(\frac{a}{L_0}, g_0^2\right)\Big|_{L_0} g_0^2$$

To take the continuum limit, we have to set the scale "a". It corresponds to tuning g_0^2 to keep a certain input physical parameter constant.

Examples of input parameters: Λ_{QCD} , mass, Sommer scale....

To measure the running coupling

input
$$g_R(1/L_0)$$

• output $g_R(s/L_0)$

s : scaling parameter

Wilson loop scheme Twisted Polyakov loop scheme

Twisted Polyakov loop scheme

Previous works of SU(2) gauge theory: de Divitiis et. al. NPB422:382 Twisted boundary condition: 't Hooft NPB153:131

 $U_{\mu}(x + \hat{\nu}L/a) = \Omega_{\nu}U_{\mu}(x)\Omega_{\nu}^{\dagger} \quad (\nu = 1, 2)$

 Ω ; twist matrix

$$\Omega_1 \Omega_2 = e^{i2\pi/3} \Omega_2 \Omega_1, \quad \Omega_\mu \Omega_\mu^\dagger = 1, \quad (\Omega_\mu)^3 = 1, \quad \text{Tr}[\Omega_\mu] = 0$$

Polyakov loop in Twisted direction

$$P_{1}(y, z, t) = \operatorname{Tr}\left([\Pi_{j}U_{1}(x = j, y, z, t)]\Omega_{1}e^{i2\pi y/3L}\right)$$

$$\uparrow \qquad \uparrow$$
To satisfy the gauge inv. and translation inv

Non-perturbative definition of renormalized coupling in TPL scheme

$$g_{TP}^{2} = \frac{1}{k} \frac{\langle \sum_{y,z} P_{1}(y,z,L/2a) P_{1}(0,0,0)^{*} \rangle}{\langle \sum_{x,y} P_{3}(x,y,L/2a) P_{3}(0,0,0)^{*} \rangle}$$

Non-perturbative definition of renormalized coupling in TPL scheme

$$g_{TP}^{2} = \frac{1}{k} \frac{\langle \sum_{y,z} P_{1}(y,z,L/2a) P_{1}(0,0,0)^{*} \rangle}{\langle \sum_{x,y} P_{3}(x,y,L/2a) P_{3}(0,0,0)^{*} \rangle}$$

At tree level, g_{TP}^2 is proportional to bare coupling.

$$g_{TP}^{2}|_{tree} = g_{0}^{2}$$

$$k = \frac{1}{24\pi^{2}} \sum \frac{(-1)^{n}}{n^{2} + (1/3)^{2}}$$

$$= 0.03184 \cdots$$

In $L \to \infty$ the ratio becomes unity

$$g_{\mathsf{TP}}^2(\mu = 1/L \to 0) \to \frac{1}{k} \sim 32$$

In our works, we have to check the g_{TP}^2 at IR fixed point which should be smaller than this value

We take $L_0 = T_0, R = T$

Renormalized coupling in "Wilson loop scheme" $g_W^2 = -R^2 \frac{\partial^2}{\partial R \partial T} \ln \langle W(R,T) \rangle \Big|_{T=R} / k$

One the lattice simulation, Creutz ratio: $CR(\hat{R},\hat{T}) = -\ln\left(\frac{W(\hat{R},\hat{T})W(\hat{R}-1,\hat{T}-1)}{W(\hat{R},\hat{T}-1)W(\hat{R}-1,\hat{T})}\right)$

The coupling constant of this scheme also has no O(a) error.

simulation (quenched QCD)

Running of the renormalized coupling constant in Quenched QCD

Running of the renormalized coupling constant in Quenched QCD

Summary of the quenched QCD test for Wilson and Polyakov loop scheme

- ➢ TPL scheme and WL scheme have nice scaling.
- Small systematic error (no O(a/L) error)
- Smearing drastically reduces the statistical error in WL scheme.
- These methods are promising. We will investigate the large flavor QCD using these renormalization scheme.

Nf=12 case (TPL scheme)

Massless large flavor QCD with twisted boundary condition Problem of twisted boundary condition of fermions

$$U_{\mu}(x + \hat{\nu}L/a) = \Omega_{\nu}U_{\mu}(x)\Omega_{\nu}^{\dagger} \quad (\nu = 1, 2)$$

$$\psi(x + \hat{\nu}L/a) = \Omega_{\nu}\psi(x)$$

$$\psi(x + \hat{\nu}L/a + \hat{\rho}L/a) = \Omega_{\rho}\Omega_{\nu}\psi(x) = e^{i2\pi/3}\Omega_{\nu}\Omega_{\rho}\psi(x)$$

= $\Omega_{\nu}\Omega_{\rho}\psi(x)$ inconsistent

Introduce "smell" $\rightarrow \psi^a_{\alpha}(x)$: $N_c \times N_s (= N_c)$ matrix Parisi, 1983(Unpublished)

$$\psi^a_{\alpha}(x+\hat{\nu}L/a) = e^{i\pi/3}\Omega^{ab}_{\nu}\psi^b_{\beta}(x)(\Omega^{\dagger}_{\nu})_{\beta\alpha} \quad (\nu=1,2)$$

Apart from boundary condition, smell likes extra flavor.

$$N_f = N_s \times n \ge N_c$$

Staggered fermion requires $N_f = 4 \times n \Rightarrow N_f = 4 \times N_s \ge 12$ simulation same as Appelquist et al.

