Higher-Derivative Corrections to the Asymptotic Virasoro Symmetry of 4d Extremal Black Holes

Noriaki OGAWA

Yukawa Institute for Theoretical Physics, Kyoto University

July 7, 2009

YITP Workshop "Field Theory and String Theory"

Based on arXiv:0903.4176

Collaboration with:

Tatsuo Azeyanagi (Kyoto Univ), Geoffrey Compére (UCSB),

Yuji Tachikawa (IAS), Seiji Terashima (YITP)

Plan to Talk

- 1 Overview: The Kerr/CFT Correspondence & Our result
- Asymptotic symmetry & Kerr/CFT (review)
- 3 Generalization to higher-derivative gravities
- Summary & Discussion

Overview: The Kerr/CFT Correspondence & Our result

[Guica-Hartman-Song-Strominger, arXiv:0809.4266]

[Hartman-Murata-Nishioka-Strominger, arXiv:0811.4393], [Compére-Murata-Nishioka, arXiv:0902.1001]

4D External (Kerr) black hole

Near Horizon
$$U(1)$$
 fibrated AdS $_2$ geometry (NHEK) $ds^2 = A(\theta)^2 \left(-r^2 dt^2 + \frac{dr^2}{r^2}\right) + d\theta^2 + B(\theta)^2 (d\phi + kr dt)^2$

We can find a dual chiral CFT₂ through asymptotic symmetry & compute the central charge c (= d.o.f. of the theory).

Reproduce the Bekenstein-Hawking entropy correctly !

We successfully extended this result to arbitrary higher-derivative action & reproduced the lyer-Wald entropy !!

Plan to Talk

- 1 Overview: The Kerr/CFT Correspondence & Our result
- 2 Asymptotic symmetry & Kerr/CFT (review)
- 3 Generalization to higher-derivative gravities
- 4 Summary & Discussion

Symmetry Correspondences in AdS₃/CFT₂ & AdS₂/CFT₂

- cf) AdS_{d+1}/CFT_d correspondence $(d \ge 3)$
 - d-dim conformal symmetry = SO(2, d)
 - 1
 - AdS_{d+1} isometry = SO(2, d)
- AdS₃/CFT₂ correspondence
 - $\begin{array}{l} \bullet \;\; \text{2-dim conformal symmetry} = \mathsf{Virasoro}_L \times \mathsf{Virasoro}_R \\ \text{(enhanced from } \mathrm{SO}(2,2) \simeq \mathrm{SL}(2,\mathbb{R})_L \times \mathrm{SL}(2,\mathbb{R})_R) \end{array}$
 - 1
 - something = Virasoro $_L imes$ Virasoro $_R$ (enhanced from AdS $_3$ isometry $\mathrm{SL}(2,\mathbb{R})_L imes \mathrm{SL}(2,\mathbb{R})_R$)
- AdS₂/CFT₂ correspondence
 - ullet 2-dim chiral conformal symmetry = Virasoro $_L$ (from $\mathrm{SL}(2,\mathbb{R})_L$)
 - 1
 - something = Virasoro_L (enhanced from AdS₂ isometry $SL(2, \mathbb{R})_L$??)

Asymptotic Symmetry & AdS₃/CFT₂ correspondence

[Brown-Henneaux, Comm.Math.Phys(1986)]

What is the symmetry enhancement on the gravity side?

- Consider asymptotic $(r \to \infty)$ symmetry, not exact isometry.
- Asymptotic symmetry
 - = diffeomorphism preserving some boundary condition

$$g_{ab}=ar{g}_{ab}+h_{ab},\quad h_{ab}\sim \mathcal{O}(r^{k_{ab}})\;(r o\infty)$$
 ($ar{g}_{ab}$: background metric)

In fact,

- Asymptotic symmetry group (ASG) of AdS₃
 - = $Virasoro_L \times Virasoro_R$ (under an appropriate boundary condition)

Asymptotic symmetry of NHEK & entropy reproduction

- asymptotic symmetry = Virasoro (\leftarrow appropriate b.c. & constraint) $\xi_n = -e^{-in\phi}(inr\partial_r + \partial_\phi), \quad i[\xi_m,\xi_n]_{Lie} = (m-n)\xi_{m+n}$ (enhancement from $\mathrm{U}(1)_\phi$ of S^1 , not $\mathrm{SL}(2,\mathbb{R})$ of AdS₂)
- locally no center ⇒ it appears from topology (& boundary)
 - "asymptotic Noether charge" Q_n corresponding to ξ_n
 - construct a symplectic structure on the phase space
 - compute the Dirac bracket

$$i\{Q_m,Q_n\}=(m-n)Q_{m+n}+rac{c}{12}m(m^2+a)\delta_{m+n}$$
 $c=rac{3k}{2\pi}\int_{horizon}\!\!dA, \quad T_{FT}=rac{1}{2\pi k}$

for dual CFT,
$$~[L_m,L_n]=(m-n)L_{m+n}+rac{c}{12}m(m^2+1)\delta_{m+n}$$
 by Cardy formula, $~S_{CFT}=rac{\pi^2}{3}c\,T_{FT}=rac{1}{4}\int_{horizon}\!dA=S_{BH}$!

Plan to Talk

- Overview: The Kerr/CFT Correspondence & Our result
- 2 Asymptotic symmetry & Kerr/CFT (review)
- 3 Generalization to higher-derivative gravities
- 4 Summary & Discussion

Kerr/CFT in higer-derivative gravities ?

Motivation:

- LEET of string theory
- universality of gauge/gravity dualities in more general gravity theories ?

Setup:

• 4D general higher-derivative pure gravity Lagrangian:

$$L\big(g_{ab}, R_{abcd}, \nabla_{e_1} R_{abcd}, \nabla_{(e_1} \nabla_{e_2}) R_{abcd}, \ldots, \nabla_{(e_1} \ldots \nabla_{e_k)} R_{abcd}\big)$$

Near horizon extremal BH geometry:

$$ds^{2} = A(\theta)^{2} \left(-r^{2}dt^{2} + \frac{dr^{2}}{r^{2}} \right) + d\theta^{2} + B(\theta)^{2}(d\phi + krdt)^{2}$$

Goal:

reproduce lyer-Wald formula for BH entropy

$$S_{IW} = -2\pi \int_{basicon} dA \, rac{\delta L}{\delta R_{abcd}} \epsilon_{ab} \epsilon_{cd}$$

What is necessary?

Action-independent properties:

- b.c. & asymptotic symmetry generators (ξ_n)
- ullet $T_{FT}=rac{1}{2\pi k}$

Therefore our main task is:

- find the appropriate definition of the asymptotic charges and symplectic form (= Poisson bracket) on phase space
- ullet comptute the central charge c

Computation of central charge and entropy reproduction

Essence

• definition of symplectic form and charges:

Barnich-Brandt-Compére formalism

(fix the ambiguity of boundary contribution, which vanishes for Einstein gravity.)

$$c=-12k\int_{horizon}\!dA\,rac{\delta L}{\delta R_{abcd}}\epsilon_{ab}\epsilon_{cd},\quad T_{FT}=rac{1}{2\pi k}$$

$$S_{CFT} = S_{IW}$$
!

perfectly reproduce lyer-Wald entropy !!

Summary & Discussion

Main result:

- We generalized the Kerr/CFT correspondence to arbitrary higer-derivative gravities.
- It always reproduces lyer-Wald entropy.

Some possible suggestions:

- gauge/gravity dualities exist for arbitrary gravity theories, without any relations to string theory or something?
- extremal BH entropy is a too trivial quantity ? (some underlying mechanism ?)
- or something ?

END

Thank you.