Higher-Derivative Corrections to the Asymptotic Virasoro Symmetry of 4d Extremal Black Holes

Noriaki OGAWA

Yukawa Institute for Theoretical Physics, Kyoto University

July 7, 2009
YITP Workshop “Field Theory and String Theory”

Based on arXiv:0903.4176

Collaboration with:
Tatsuo Azeyanagi (Kyoto Univ), Geoffrey Compére (UCSB),
Yuji Tachikawa (IAS), Seiji Terashima (YITP)
Plan to Talk

1. Overview: The Kerr/CFT Correspondence & Our result
2. Asymptotic symmetry & Kerr/CFT (review)
3. Generalization to higher-derivative gravities
4. Summary & Discussion
Overview: The Kerr/CFT Correspondence & Our result

4D External (Kerr) black hole

Near Horizon \[\rightarrow \] \(U(1) \) fibrated \(\text{AdS}_2 \) geometry (NHEK)

\[
ds^2 = A(\theta)^2 \left(-r^2 dt^2 + \frac{dr^2}{r^2} \right) + d\theta^2 + B(\theta)^2 (d\phi + kr dt)^2
\]

We can find a dual chiral \(\text{CFT}_2 \) through asymptotic symmetry & compute the central charge \(c \) (\(= \text{d.o.f. of the theory} \)).

\[\Downarrow \]

Reproduce the Bekenstein-Hawking entropy correctly!

We successfully extended this result to arbitrary higher-derivative action & reproduced the Iyer-Wald entropy !!
1. Overview: The Kerr/CFT Correspondence & Our result

2. Asymptotic symmetry & Kerr/CFT (review)

3. Generalization to higher-derivative gravities

4. Summary & Discussion
Symmetry Correspondences in \(\text{AdS}_3/\text{CFT}_2 \) & \(\text{AdS}_2/\text{CFT}_2 \)

- cf) \(\text{AdS}_{d+1}/\text{CFT}_d \) correspondence (\(d \geq 3 \))
 - \(d \)-dim conformal symmetry = \(\text{SO}(2, d) \)

 \(\cong \)

 \(\text{AdS}_{d+1} \) isometry = \(\text{SO}(2, d) \)

- \(\text{AdS}_3/\text{CFT}_2 \) correspondence
 - 2-dim conformal symmetry = \(\text{Virasoro}_L \times \text{Virasoro}_R \)
 (enhanced from \(\text{SO}(2, 2) \cong \text{SL}(2, \mathbb{R})_L \times \text{SL}(2, \mathbb{R})_R \))

 \(\cong \)

 \(\text{something} = \text{Virasoro}_L \times \text{Virasoro}_R \)
 (enhanced from \(\text{AdS}_3 \) isometry \(\text{SL}(2, \mathbb{R})_L \times \text{SL}(2, \mathbb{R})_R \))

- \(\text{AdS}_2/\text{CFT}_2 \) correspondence
 - 2-dim chiral conformal symmetry = \(\text{Virasoro}_L \) (from \(\text{SL}(2, \mathbb{R})_L \))

 \(\cong \)

 \(\text{something} = \text{Virasoro}_L \)
 (enhanced from \(\text{AdS}_2 \) isometry \(\text{SL}(2, \mathbb{R})_L \ ??) \)
What is the symmetry enhancement on the gravity side?

- **Consider asymptotic** $(r \to \infty)$ **symmetry**, not exact isometry.

- **Asymptotic symmetry**

 \[g_{ab} = \bar{g}_{ab} + h_{ab}, \quad h_{ab} \sim O(r^{k_{ab}}) \quad (r \to \infty) \]

 \[(\bar{g}_{ab}: \text{background metric}) \]

In fact,

- **Asymptotic symmetry group (ASG) of AdS$_3$**

 \[= \text{Virasoro}_L \times \text{Virasoro}_R \]

 (under an appropriate boundary condition)
Asymptotic symmetry of NHEK & entropy reproduction

- asymptotic symmetry = Virasoro \((\leftarrow \text{appropriate b.c. \\& constraint})\)
 \[\xi_n = -e^{-in\phi}(inr\partial_r + \partial_\phi), \quad i[\xi_m, \xi_n]_{Lie} = (m - n)\xi_{m+n}\]

 (enhancement from \(U(1)_\phi\) of \(S^1\), not \(SL(2, \mathbb{R})\) of AdS\(_2\))

- locally no center \(\Rightarrow\) it appears from topology (\& boundary)
 - “asymptotic Noether charge” \(Q_n\) corresponding to \(\xi_n\)
 - construct a symplectic structure on the phase space
 - compute the Dirac bracket
 \[i\{Q_m, Q_n\} = (m - n)Q_{m+n} + \frac{c}{12}m(m^2 + a)\delta_{m+n}\]

 \[c = \frac{3k}{2\pi} \int_{\text{horizon}} dA, \quad T_{FT} = \frac{1}{2\pi k}\]

 for dual CFT,
 \[\left[L_m, L_n \right] = (m - n)L_{m+n} + \frac{c}{12}m(m^2 + 1)\delta_{m+n}\]

 by Cardy formula,
 \[S_{CFT} = \frac{\pi^2}{3}cT_{FT} = \frac{1}{4} \int_{\text{horizon}} dA = S_{BH}\]
Plan to Talk

1 Overview: The Kerr/CFT Correspondence & Our result

2 Asymptotic symmetry & Kerr/CFT (review)

3 Generalization to higher-derivative gravities

4 Summary & Discussion
Kerr/CFT in higher-derivative gravities ?

Motivation:

- LEET of string theory
- universality of gauge/gravity dualities in more general gravity theories?

Setup:

- 4D general higher-derivative pure gravity Lagrangian:
 \[L(g_{ab}, R_{abcd}, \nabla e_1 R_{abcd}, \nabla (e_1 \nabla e_2) R_{abcd}, \ldots, \nabla (e_1 \ldots \nabla e_k) R_{abcd}) \]

- Near horizon extremal BH geometry:
 \[ds^2 = A(\theta)^2 \left(-r^2 dt^2 + \frac{dr^2}{r^2} \right) + d\theta^2 + B(\theta)^2 (d\phi + kr dt)^2 \]

Goal:

- reproduce Iyer-Wald formula for BH entropy
 \[S_{IW} = -2\pi \int_{\text{horizon}} dA \frac{\delta L}{\delta R_{abcd}} \epsilon_{ab} \epsilon_{cd} \]
What is necessary?

Action-independent properties:

- b.c. & asymptotic symmetry generators \((\xi_n)\)
- \(T_{FT} = \frac{1}{2\pi k}\)

Therefore our main task is:

- find the appropriate definition of the asymptotic charges and symplectic form (= Poisson bracket) on phase space
- compute the central charge \(c\)
Computation of central charge and entropy reproduction

Essence

- definition of symplectic form and charges:

 \[c = -12k \int_{\text{horizon}} dA \, \frac{\delta L}{\delta R_{abcd}} \epsilon_{ab} \epsilon_{cd}, \quad T_{FT} = \frac{1}{2\pi k} \]

 \[\therefore S_{CFT} = S_{IW}! \]

 perfectly reproduce Iyer-Wald entropy!!
Main result:

- We generalized the Kerr/CFT correspondence to arbitrary higher-derivative gravities.
- It always reproduces Iyer-Wald entropy.

Some possible suggestions:

1. gauge/gravity dualities exist for arbitrary gravity theories, without any relations to string theory or something?

2. extremal BH entropy is a too trivial quantity? (some underlying mechanism?)

3. or something?
Thank you.