On BPS vortices in gauge theories with general non-Abelian groups.

Keisuke Ohashi

(Kyoto Univ.)

based on papers: arXiv:0809.2014, arXiv:0903.4471 $+\alpha$ in collaboration with

M.Eto, T.Fujimori, S.B.Gudnason, K.Konishi, T.Nagashima, M.Nitta, W.Vinci

§1. Introduction & Motivation

- Vortex is a magnetic flux (with two codim.) in Higgs phase. We consider a topological BPS soliton supported by $\pi_1(U(1)) = \mathbb{Z}$.
- A vortex in Abelian gauge theory
 Abrikosov('57) and Nielsen-Olesen('73) (ANO vortex).
 Moduli space for multi vortices: Taubes('80).

no known analytic solution

exponential tails e^{-mr} (local-type), $(m = g\sqrt{\xi})$

• Extension to vortices in the $U(N_c)$ gauge theory Hanany-Tong, Konishi et al.

orientational moduli

$$F_{12} = U ext{diag}(F_{12}^{ ext{ANO}}, 0, \cdots, 0) U^\dagger,
ightarrow \mathbb{C}P^{N_{ ext{c}}-1} \simeq rac{SU(N)}{SU(N-1) \otimes U(1)}$$

• The moduli matrix formalizm determines moduli spaces for 1/2 BPS vortices in the $U(N_c)$ gauge theory completely. (EINOS('05))

• Today's topic:

Extention the moduli matrix formalizm into arbitrary gauge group $G = [U(1) \times G']/\mathbb{Z}_{n_0}$

⇒ non-trivial (anisotropic) vacuum moduli

$$\Rightarrow \begin{cases} \text{polynomial tails } 1/r^n \text{ (semilocal-type)} \\ \text{fractional vortices: multi peaks even for the minimal vortex solution} \end{cases}$$

§2. 1/2 BPS Equations for Vortices

• Our model: $(\mathcal{N}=2 \text{ SUSY})$ $G=(U(1) \times G')/\mathbb{Z}_{n_0}$ gauge theory with N_f fundamental fields and FI term

The scalar potential of this model

$$V_{
m pot} \, = \, rac{e^2}{4} \left(\xi - {
m Tr}[oldsymbol{H}^\dagger oldsymbol{H}]
ight)^2 + rac{g^2}{4} \sum_{I \geq 1} \left({
m Tr}[oldsymbol{H}^\dagger oldsymbol{T}_I oldsymbol{H}]
ight)^2$$

 $(\boldsymbol{H})^{rA} \equiv \boldsymbol{H}^{rA}$: chiral fields, complex $N_c \times N_f$ matrix $\operatorname{color} r = 1, \cdots, N_c (= 2N), \ \operatorname{flavor} A = 1, 2, \cdots N_f (= 2N)$ $\xi(>0)$: Fayet-Illiopoulos term e,g: gauge couplings for U(1) and G' T_I $(I=1,\cdots)$: generators of G'

ullet Dimension of the vacuum moduli space $\mathcal{M}_{\mathrm{vac}}$

$$\mathrm{dim}_{\mathbb{C}}\mathcal{M}_{\mathrm{vac}} = N_{\mathrm{c}}N_{\mathrm{f}} - \mathrm{dim}G \geq 0, \quad N_{\mathrm{f}} \geq N_{\mathrm{c}}$$

 \Rightarrow non-trivial vaccum moduli except for $G=U(N_{
m c}), N_{
m f}=N_{
m c}$ case

• Vacuum moduli space \mathcal{M}_{vac} in the Higgs phase

For $G'=SO(N_{
m c}), N_{
m f}=N_{
m c},$

the vacuum is described by holomorphic G' invariants

$$M \equiv H^{\mathrm{T}}JH, \quad B \equiv \det H$$

with G' invariant tensor J. $(J^T = J \text{ for } SO, J^T = -J \text{ for } USp)$

$$egin{aligned} \mathcal{M}_{ ext{vac}} &= ig\{ H ig| D ext{-term condition} ig\}/G \ &\simeq ig\{ M, B ig| M: ext{symmetric}, ext{det}(J) B^2 = ext{det}\, M ig\}/\mathbb{C}^* \end{aligned}$$

 $rank(M) < N_c - 1 \Rightarrow (partial)$ Coulomb phase!

Scalar curvature of \mathcal{M}_{vac} $(g, e \to \infty)$

$$R = rac{2\sum_l \mu_l}{\xi} \sum_{i>j} \left(rac{1}{\mu_i + \mu_j} + \sum_k rac{\mu_k}{(\mu_i + \mu_k)(\mu_j + \mu_k)}
ight) + ext{const.}$$

with fixing the flavor symmetry,

$$M=\operatorname{diag}(\mu_1,\mu_2,\cdots,\mu_{N_c}),\quad \mu_i\in\mathbb{R}_{>0}$$

Ref: In the case of $G' = SU(N_c)$, \mathcal{M}_{vac} is just a point for $N_c = N_f$, and a Grassmannian (R = const.) for $N_c < N_f$.

•1/2 BPS equations for vortices

$$egin{align} 0 &= \mathcal{D}_1 oldsymbol{H} + i \mathcal{D}_2 oldsymbol{H}, \ 0 &= F_{12}^0 + rac{e^2}{2} (\xi - ext{Tr}[oldsymbol{H}^\dagger oldsymbol{H}]) \ 0 &= F_{12}^I - rac{g^2}{2} ext{Tr}[oldsymbol{H}^\dagger oldsymbol{T}_I oldsymbol{H}], \quad ext{for } I \geq 1. \end{align}$$

General solution for the first eq. $(z \equiv x_1 + ix_2, \quad \bar{\partial} = \partial/\partial z^*)$

$$egin{aligned} oldsymbol{H} &= S^{-1}(oldsymbol{z}, oldsymbol{z}^*) oldsymbol{H}_0(oldsymbol{z}), \quad ar{\partial} oldsymbol{H}_0(oldsymbol{z}) = 0 \ A_1 + i A_2 &= -i 2 S^{-1} ar{\partial} S \end{aligned}$$

with an arbitrary $N_c \times N_f$ matrix $H_0(z)$, and an $S(z,z^*) \in G^{\mathbb{C}}$. The last two equations uniquely determine the gauge invariant SS^{\dagger} with a given $H_0(z)$.

$$H_0 o S o A_{1,2}, \ H$$

 $H_0(z)$ parameterizes the moduli space for vortices.

We call $H_0(z) = H_0(z, \varphi^{\alpha})$ a 'moduli matrix' containing complex moduli φ^{α} .

• Topological Charge and Weak Condition for G' = SO(2N)BPS bound of energy, $E \geq 2\pi \xi \nu$,

$$oldsymbol{
u} \equiv -rac{1}{2\pi}\int d^2x F_{12}^0 = rac{1}{4\pi} \oint dz \partial \log \det SS^{\dagger 2}$$

$$\Rightarrow \quad extbf{ extit{H}}_0(z)^{ ext{T}} J extbf{ extit{H}}_0(z) = (SH)^{ ext{T}} J (SH) = \sqrt[N]{\det S} \, M \sim \mathcal{O}(z^{2
u})$$

We ontain a (weak) condition for the moduli matrix $H_0(z)$

$$H_0(z)^{
m T}JH_0(z)=M_{
m vev}z^{m k}+\mathcal{O}(z^{m k-1})$$
 with a 'vortex number' ${m k}\equiv 2
u\in\mathbb{Z}_{>0}$ and $\langle M
angle =M_{
m vev}.$

Ref; $\det H_0(z) = \mathcal{O}(z^{N_c \nu}), k \equiv N_c \nu \in \mathbb{Z} \text{ for } G' = SU(N_c), N_f = N_c.$

• Moduli space for SO(2N), USp(2N) semilocal vortices There is an equivalence relation with $V(z) \in G^{\mathbb{C}}, \, \bar{\partial}V(z) = 0,$

$$\{H_0(z), S(z, z^*)\} \simeq \{V(z)H_0(z), V(z)S(z, z^*)\}.$$

Therefore the moduli space with a vortex number $k \in \mathbb{Z}_{>0}$ is

$$oldsymbol{\mathcal{M}}_k^{ ext{semilocal}} \ = \ rac{\{H_0(z)|H_0(z)\in ext{Pol}(z),\ {H_0}^{ ext{T}}JH_0 = \mathcal{O}(z^k)\}}{\{V(z)|V(z)\in G^{\mathbb{C}},\ ar{\partial}V(z) = 0\}}$$

We find $\dim_{\mathbb{C}}(\mathcal{M}_k^{\text{semilocal}}) = 2kN^2$ which coincides with result of the index theorem.

For instance, the moduli matrix for the minimal vortex solution is given by

$$H_0(z) = \left(egin{array}{cc} z 1_N - A & C \ B & 1_N \end{array}
ight), \quad ext{with a choice } M_{ ext{vev}} = J = \left(egin{array}{cc} 1_N \ 1_N \end{array}
ight).$$

Here A, B, C are arbitrary $N \times N$ matrices with $B^{\mathrm{T}} = -B, C^{\mathrm{T}} = C$.

§3. Semilocal vortex v.s. Local vortex

In a region where $|z| \gg (e\sqrt{\xi})^{-1}, (g\sqrt{\xi})^{-1},$ vortex solution in the gauge theory

 \simeq lump solution in an NL σ M with a target space $\mathcal{M}_{\mathrm{vac}}$

For
$$G'=SO(N), N_{\mathrm{f}}=N$$
 case $M=M(z)=rac{H_0^TJH_0}{\mathrm{Tr}H_0^TJH_0/N}\sim M_{\mathrm{vev}}+\mathcal{O}(z^{-1}).$

 \Rightarrow Generic voretx solutions have polynomial tails:(semilocal type) Ref. $G' = SU(N_c)$ with $N_f > N_c$.

Iff $H_0(z)$ satisfies the strong condition,

$$H_0(z)^T J H_0(z) = M_{ ext{vev}} imes \prod_{i=1}^k (z-z_i), \quad \Rightarrow \quad M(z) = M_{ ext{vev}}$$

 \Rightarrow exponential tail $e^{-e\sqrt{\xi}|z|}, e^{-g\sqrt{\xi}|z|}$ (local vortex)

§4. Local vortex: Confined Fractional Vortices

• Semilocal vortex solution with k=1

A typical form of $H_0(z)$ for G' = SO(2N) with $N_f = N_c$ is

$$H_0(z)=\left(egin{array}{cc} z1_N-A & C \ 0 & 1_N \end{array}
ight), \quad A= ext{diag}(z_1,z_2,\cdots,), \quad C= ext{diag}(c_1,c_2,\cdots)$$

Energy density for G' = SO(6) at the limit $e, g \to \infty$

 z_1, z_2, z_3 : positions of three peaks

 c_1, c_2, c_3 : size of three peaks

There exist N peaks ('fractional' vortices) around $z = z_i$ $(i = 1, \dots, N)!!$.

$$E \sim 2\xi\partialar\partial\log(\sum_{i=1}^N\sqrt{|z-z_i|^2+|c_i|^2})\stackrel{zpprox z_i, ^orall c_ipprox 0}{pprox}rac{\xi}{2\sum_{j
eq i}|z_i-z_j|} imesrac{1}{|z-z_i|}.$$

Large distances $|z_i - z_j| \Rightarrow$ The energy density is diluted.

• Natural realization of a local vortex

Lift of all continuous directions of the vacuum by a super potential

$$W=m{
m Tr}[XMJ], \quad M=H^{
m T}JH,$$

with additional fields X: a traceless $N_c \times N_c$ matrix, $X^T J = J X$. F-term condition \Rightarrow the strong condition

$$rac{\partial W}{\partial X} = 0 \quad o M \propto J \quad o \quad H_0^T(z)JH_0(z) = J\prod_i(z-z_i).$$

$$\Rightarrow z_i - z_j = c_i = 0.$$

A local vortex can be regarded as confined fractional vortices.

§5. Moduli spaces for Local vortices

Moduli space for the local vortices

$$\mathcal{M}_k^{ ext{local}} \ = \ rac{\{H_0(z)|H_0(z)\in ext{Pol}(z),\, {H_0}^{ ext{T}}JH_0=JP(z), P(z)=\mathcal{O}(z^k)\}}{\{V(z)|V(z)\in G^{\mathbb{C}},\, ar{\partial}V(z)=0\}}$$

Examples for k=1

$$egin{aligned} G' &= SO(2N) : & \mathcal{M}_{k=1}^{ ext{local}} = \mathbb{C} imes rac{SO(2N)}{U(N)} imes \mathbb{Z}_2 \ G' &= USp(2N) : & \mathcal{M}_{k=1}^{ ext{local}} = \mathbb{C} imes rac{USp(2N)}{U(N)} \ G' &= SO(3) : \mathcal{M}_{k=1}^{ ext{local}} = \mathbb{C} + \mathbb{C} imes \mathbb{C}P^1 \ G' &= SO(5) : \mathcal{M}_{k=1}^{ ext{local}} = \mathbb{C} imes rac{USp(4)}{U(2)} + \mathbb{C} imes W\mathbb{C}P_{(2,1,1,1,1)}^4 \end{aligned}$$

Moduli spaces can have singular subspaces.

§5. Summary and Discussion

- We extended the moduli matrix formalizm for BPS vortices into the arbitary gauge group $G = U(1) \times G'/\mathbb{Z}_{n_0}$.
- Vortex solutions are generically semilocal type in the model without super potentials, and consist of fractional vortices.
- With an appropriate super potential, a local vortex arises as confined fractional vortices.
- We determined the moduli spaces of the minimal local vortex for SO(2N) and USp(2N) and some cases for SO(2N+1).

Future problems

- Effective action of (semi)local vortices
- Non BPS vortices
- Moduli matching between coinsident vortices and monopoles.
- method for approximation of solutions
 to calculate the metric of the moduli space
- ullet Proof of existence and uniqueness of SS^\dagger