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1 Introduction

• Check of the predictions of superstring theories

The situation where the effects of quantum gravity become important

⇒ Black holes（singularity）
Early universe（singularity）

It is urgent to see whether and how these problems are resolved and
if superstrings can give realistic models of particles and their interaction
including gravity

Here we consider black holes. ———————————–

• We need dilaton!!

Many studies of black holes have been performed by using low-energy
effective theories inspired by string theories, which typically involve not
only the metric but also the dilaton field (as well as several gauge fields).

There are studies of such solutions in Einstein theories with dilaton.

• What about higher order corrections?

It is known that there are correction terms of higher orders in the curva-
ture to the lowest effective supergravity action coming from superstrings.
The simplest correction is the Gauss-Bonnet (GB) term coupled to the
dilaton field.
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However, black holes in Einstein-GB theories have been studied much
but WITHOUT DILATON!

In order to understand properties of black holes in string theories, we
should include dilaton!

• Another motivation:
Many people consider the application to the calculation of shear vis-

cosity in strongly coupled gauge theories using black hole solutions in
five-dimensional Einstein-GB theory via AdS/CFT correspondence, but
without dilaton. In order to see this in the context of superstrings, we
should again include dilaton, and also search for asymptotically AdS so-
lutions.

Last year we presented asymptotically flat solution for spherically sym-
metric space (curvature of the space k = +1). When we examine k = 0, it
turns out that there is no solution without c.c. There are several sources
of (negative) cosmological constant in superstrings. e.g. RR 10-form.
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2 Dilatonic Einstein-GB theory

2.1 Basic equations

The action:

S =
1

2κ2
D

∫
dDx

√
−g

[
R − 1

2
(∂µφ)2 + α2e

−γφR2
GB − Λeλφ

]
,

R: the scalar curvature, φ: a dilaton field,
R2

GB = RµνρσR
µνρσ − 4RµνR

µν + R2: the GB combination,
κ2

D = 8πGD: a D-dimensional gravitational constant,
α2 = α′/8: α is the Regge slope parameter α′, γ = 1/2, Λ: (negative)
cosmological “constant.”

Line element in D-dimensional static spacetime

ds2
D = −Be−2δdt2 + B−1dr2 + r2hijdxidxj,

where hijdxidxj represents the line element of a (D−2)-dimensional hyper-
surface with constant curvature of signature k and volume Σk for k = ±1, 0.
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Master equations:

[
(k − B)r̃D−3

]′D − 2

r̃D−4
h − 1

2
Br̃2φ′2 − (D − 1)4 e−γφ(k − B)2

r̃2

+4(D − 2)3 γe−γφB(k − B)(φ′′ − γφ′2)

+2(D − 2)3 γe−γφφ′(k − B)[(D − 3)k − (D − 1)B]

r̃
− r̃2Λ̃eλφ = 0 ,

δ′(D − 2)r̃h +
1

2
r̃2φ′2 − 2(D − 2)3 γe−γφ(k − B)(φ′′ − γφ′2) = 0 ,

(e−δr̃D−2Bφ′)′ = γ(D − 2)3e
−γφ−δr̃D−4

[
(D − 4)5

(k − B)2

r̃2
+ 2(B′ − 2δ′B)B′

−4(k − B)BU(r) − 4
D − 4

r̃
(B′ − δ′B)(k − B)

]
+ e−δr̃D−2λΛ̃eλφ,

where we have defined

r̃ ≡ r
√

α2
, m̃ ≡ Gm

α
(D−3)/2
2

, (D − m)n ≡ (D − m)(D − m − 1)(D − m − 2) · · · (D − n),

h ≡ 1 + 2(D − 3)e−γφ
[
(D − 4)

k − B

r̃2
+ γφ′3B − k

r̃

]
,

h̃ ≡ 1 + 2(D − 3)e−γφ
[
(D − 4)

k − B

r̃2
+ γφ′2B

r̃

]
,
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U(r) ≡ 1

2h̃

[
(D − 3)4

k − B

r̃2B
− 2

D − 3

r̃

(B′

B
− δ′

)
− 1

2
φ′2

+(D − 3)e−γφ

[
(D − 4)6

(k − B)2

r̃4B
− 4(D − 4)5

k − B

r̃3

(B′

B
− δ′ − γφ′

)
−4(D − 4)γ

k − B

r̃2

(
γφ′2 +

D − 2

r̃
φ′ − Φ

)
+ 8

γφ′

r̃

{(B′

2
− δ′B

)(
γφ′ − δ′ +

2

r̃

)
−D − 4

2r̃
B′

}
+ 4(D − 4)

( B′

2B
− δ′

)B′

r̃2
− 4

γ

r̃
Φ(B′ − 2δ′B)

]]
,

Φ ≡ φ′′ +
(B′

B
− δ′ +

D − 2

r̃

)
φ′.

Symmetries
1. Scaling transf. B → a2B, r̃ → ar̃, (a: an arbitrary constant).

⇒ generate solutions with different horizon radii r̃H but the same Λ̃.
⇒ The mass scales like

M̃0 ∝ r̃ D−1
H , Λ̃: fixed

2. Scaling of c.c.:

φ → φ − φ∗, Λ̃ → e(λ−γ)φ∗Λ̃, B → e−γφ∗B ,

⇒ generate solutions for different cosmological constants Λ̃ but with
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the same horizon radius r̃H. ⇒ The mass scales as

M̃0 ∝ |Λ̃|γ/(γ−λ), r̃H: fixed

3. Another shift symmetry

δ → δ − δ∞, t → e−δ∞t,

⇒ the asymptotic value of δ = 0.

2.2 Boundary conditions

1. The existence of a regular horizon r̃H:

B(r̃H) = 0, |δH| < ∞, |φH| < ∞ .

2. The nonexistence of singularities outside the event horizon (r̃ > r̃H):

B(r̃) > 0, |δ| < ∞, |φ| < ∞ .

3. “AdS asymptotic behavior” (r̃ → ∞):

B ∼ b̃2r̃
2 − 2M̃

r̃µ
, δ(r) ∼ δ0 +

δ1

r̃σ
, φ ∼ φ0 +

φ1

r̃ν
,

with finite constants b̃2 > 0, M̃ , δ0, δ1, φ0, φ1 and positive constant µ, σ,
ν.



Black holes in Dilatonic EGB Theory ..., N. Ohta 8

Given the b.c. at the horizon, φ′
H is determined:

BH = 0, hH = h̃H = 1,

B′
H = − Λ̃

D − 2
r̃HeλφH ,

φ′
H = − 1

r̃H

[
2γ(D − 3)Λ̃e(λ−γ)φH + (D − 2)λ

]
,

δ′H = − 1

2(D − 2)
r̃H(φ′

H)2. ⇒ no solution without c.c.

Effective potential picture
The dilaton field equation

2φ − dṼeff

dφ
= 0,

with the “effective potential”

Ṽeff = −e−γφR̃2
GB + Λ̃eλφ.

For the asymptotic AdS behavior for B, this gives

Ṽeff = −(D)3 b̃ 2
2 e−γφ + Λ̃eλφ.

When λ > 0, the effective potential has a maximum (Fig. 1 (a)), and the
dilaton field would approach a finite constant φ0 at r = ∞. Otherwise, the
dilaton diverges, and we consider only the case of λ > 0.
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Figure 1: The effective potentials of the dilaton field in the Liouville potential case with (a) λ > 0 and (b) λ < 0.

The asymptotic forms of the fields

φ ∼ φ0 +
φ+

r̃ν+
+ · · · , B ∼ b̃2r̃

2 − 2M̃+

r̃ν+−2
− 2M̃0

r̃D−3
+ · · · , δ ∼ δ0 +

δ+

r̃ν+
+ · · · .

where

ν± =
D − 1

2

[
1 ±

√
1 − m̃2

m̃2
BF

]
, m̃2

BF = −(D − 1)2

4˜̀2
AdS

= −(D − 1)2

4
b̃2,

There is a term 1/rν− (non-normalizable); we tune the boundary condition
such that this term disappears.

We choose the following parameters in our numerical analysis:

γ =
1

2
, λ =

1

3
, Λ̃ < 0, φ− = 0, δ0 = 0,
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3 D = 4 black hole solutions

For the horizon radius r̃H = 1 and Λ̃ = −3/2 (˜̀ = 2) with the additional
boundary conditions, we find φH = 2.33422 in order to obtain φ− = 0, and
δH = −0.02893, φ0 = 2.43279 and M̃0 = 0.28014. (See next figure.)
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Figure 2: The configurations of the field functions (a) m̃g, (b) δ and (c) φ in four dimensions for r̃H = 1 and Λ̃ = −3/2.

By using the symmetry, we can generate solutions for other Λ̃ and r̃H

and the gravitational mass M̃0:

M̃0 = 0.28014

(
2|Λ̃|
3

)3

r̃ 3
H .

4 D = 5 solutions

For the horizon radius r̃H = 1 and Λ̃ = −3 (˜̀ = 2) with the addi-
tional boundary conditions at the horizon, we find φH = 9.35869, δH =
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−0.02188, φ0 = 9.43249 and M̃0 = 3.78189.
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Figure 3: The configurations of the field functions (a) m̃g, (b) δ and (c) φ in five dimensions for r̃H = 1 and Λ̃ = −3.

The gravitational mass M̃0 for this case is given by

M̃0 = 3.7819

(
|Λ̃|
3

)3

r̃ 4
H .

5 D = 6 solutions

For the horizon radius r̃H = 1 and Λ̃ = −5 (˜̀ = 2), we find φH = 13.8108,
δH = −0.01621, φ0 = 13.86530 and M̃0 = 19.93321.

The regular black hole solutions exist for all r̃H > 0.
The gravitational mass M̃0 is given as

M̃0 = 19.933

(
|Λ̃|
5

)3

r̃ 5
H .

The mass of the black hole approaches 0 as r̃H → 0.
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Figure 4: The configurations of the field functions (a) m̃, (b) δ and (c) φ in six dimensions for r̃H = 1 and Λ̃ = −5.

6 D = 10 solutions

For the horizon radius r̃H = 1 and Λ̃ = −18 (˜̀ = 2), we find φH = 23.6338,
δH = −0.0024575, φ0 = 23.64366 and M̃0 = 771.67622.

1 2 3 4 5
400

500

600

700

800

1 2 3 4 5
-0.008

-0.006

-0.004

-0.002

0.000

r�

∆

(a) (b) (c)

1 2 3 4 5
23.620

23.625

23.630

23.635

23.640

23.645

23.650

r�

Φ

Figure 5: The configurations of the field functions (a) m̃, (b) δ and (c) φ in ten dimensions for r̃H = 1 and Λ̃ = −18.

The gravitational mass M̃0 is given by

M̃0 = 771.68

(
|Λ̃|
18

)3

r̃ 9
H .



Black holes in Dilatonic EGB Theory ..., N. Ohta 13

7 Discussions

Properties:
Regular black hole solutions exist for all r̃H > 0.
The mass of the dilatonic black holes approaches zero as r̃H → 0.
The dilaton field φ monotonically increases for large black holes.
These are in agreement with the non-dilatonic case,

B(r̃) =
1

2(D − 3)4

1 ∓

√
1 − 4(D − 3)4

˜̀2
+

8(D − 3)4M̄

r̃D−1

 r̃2,

δ(r̃) ≡ 0

Mass is given by

M̄ =
1

2˜̀2
r̃ D−1
H ⇔ M̃0 ∝ |Λ̃|γ/(γ−λ)r̃ D−1

H . dilatonic case

Hawking temperature: T̃H =
e−δH

4π
B′

H = − e−δH

4(D − 2)π
Λ̃r̃HeλφH ,

Not much qualitative difference between the dilatonic and the non-
dilatonic cases.
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This solution has been used to study higher order corrections to shear
viscosity to entropy density and the naive lower bound 1/4π as well as the
new bound 4/25π from GB correction (without dilaton) may be violated.

R. G. Cai, Z. Y. Nie, N. Ohta and Y. W. Sun, Phys. Rev. D 79 (2009)
066004 [arXiv:0901.1421 [hep-th]].

k = 1 k = 0 k = −1
Λ = 0 I II (No) IV (No)
Λ = 1 IV (No) IV (No) IV

Λ = −1 III II III
IV: to appear soon, No: no solution

Remaining problems:

1. The global structures:

Our numerical analysis was limited to outer spacetime of the event
horizon.

The global structures of the solutions such as the existence of the inner
horizon and (central or branch) singularity have not been clarified.
This may be done by integrating field equations inward numerically.

2. The ambiguity of the frames: We have studied the solution in the
Einstein frame.
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There is, however, a possibility that the properties of solutions changes
drastically by transforming to the string frame. In particular, the
conformal transformation may become singular.

3. Charged solution:

It would be also interesting to extend our analysis to dilatonic black
holes (large and small) with charges.

4. Stability:

The stability of our solutions is another important subject to study.


