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Motivation

Why Supersymmetry on a Lattice (Ultimate Goal)?

Nonperturbative/Constructive/Strong-coupling formulation

of SUSY QFT with the 1st principle calculations

Rigid regularization scheme independent of perturbation

Numerical simulations

Possible Applications?

Gauge/gravity duals

SUSY breaking, phenomenology beyond SM
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Difficulties

Symmetries on a Lattice: Always Nontrivial

Poincaré invariance =⇒ Discretized version is enough

Gauge symmetry =⇒ Wilson’s link formulation

Chiral symmetry =⇒ Ginsparg–Wilson fermion, etc.

Supersymmetry =⇒ Lattice version as well??

Immediate Obstacles for SUSY on a Lattice

Doubling phenomena =⇒ mismatch of fermion & boson d.o.f.

=⇒ avoided with extended SUSY, or G–W fermions, etc.

Leibniz rule failure

=⇒ more crucial
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Leibniz Rule Failure

Leibniz Rule Failure of “Derivative” Op.

Superalgebra contains momentum op.:

{QA, QB} = PAB = iγµ∂µ.

On the lattice, ∂µ → ∂lat
µ : “derivative” on the lattice?

Natural candidate ∂lat
µ = ∂+µ: finite difference op. would obey

slightly modified Leibniz rule: [Dondi–Nicolai, Fujikawa, . . . ]

∂+µ(ϕ · ϕ′)(x) = ∂+µϕ(x) · ϕ′(x) + ϕ(x+ aµ̂) · ∂+µϕ
′(x).

No-go theorem: no local “derivative” on the lattice can obey the

exact Leibniz rule. [Kato–Sakamoto–So]
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Leibniz Rule Problem

Problem

Due to the Grassmann-odd nature, supercharge would obey the

exact Leibniz rule even on the lattice

QA(ϕ · ϕ′)(x) = QAϕ(x) · ϕ′(x) + (−1)|ϕ|ϕ(x) ·QAϕ′(x).

Simple realization of superalgebra on the lattice

{QA, QB} = iγµ∂lat
µ

isn’t possible.

J. Saito (Hokkaido U.) Lattice SUSY w/ a Deformed Superalgebra 5 / 20



Introduction Hopf-Algebraic Treatment Construction of QFT Summary

Leibniz Rule Problem

Solutions?

Give up the exact algebra =⇒ fine-tune problem in general.

[Curuci–Veneziano, . . . ]

Keep only a subalgebra which doesn’t contain the momentum

operator

=⇒ works without fine-tuning in low dimensions.

[Kaplan et. al., Catterall et. al., Sugino, . . . ]

=⇒ also manageable in four dimensions? [Elliott–Giedt–Moore, . . . ]

Our Approach

Deform the Leibniz rule for the supercharge.

[D’Adda–Kawamoto–Kanamori–Nagata, Arianos–D’Adda–Feo–Kawamoto–J. S.]
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Deformed-Algebra Approach

Deformed Leibniz Rule for Supercharges Let us introduce the

deformed rule

Qlat
A (ϕ ·ϕ′)(x) = Qlat

A ϕ(x) ·ϕ′(x)+(−1)|ϕ|ϕ(x+aA) ·Qlat
A ϕ

′(x).

This extends the notion of Lie superalgebra.

=⇒ rigourous treatment: Hopf algebra.

Really a symmetry of a QFT?

=⇒ QFT with mildly generalized statistics and corresponding

Ward–Takahashi identities. [Oeckl, Sasai–Sasakura]
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Plan of Talk

1 Introduction

2 Hopf-Algebraic Treatment of Lattice Superalgebra

3 Construction of QFT with the Hopf–Algebraic Supersymmetry

4 Summary & Discussion
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Hopf Algebra

Hopf Algebra
Hopf Algebra H

‖
Algebra

associative product · : H ⊗H → H

unit η : C→ H

+Coalgebra

coassociative coproduct ∆ : H → H ⊗H

counit ε : H → C
+Antipode

S : H → H
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Leibniz Rule =⇒ Coproduct

Leibniz Rules =⇒ Coproduct

Specifying Leibniz rules amounts to determining coproducts:

Qlat
A (ϕ · ϕ′)(x) = Qlat

A ϕ(x) · ϕ′(x) + (−1)|ϕ|ϕ(x+ aA) ·Qlat
A ϕ

′(x)

⇓Q
lat
A B(ϕ · ϕ′)(x) = m

(
∆(Qlat

A ) B(ϕ⊗ ϕ′)
)
(x),

∆(Qlat
A ) = Qlat

A ⊗ 1l + (−1)FTaA ⊗Qlat
A ,

where m(ϕ⊗ ϕ′) = ϕ · ϕ′,

TaA Bϕ(x) = ϕ(x+ aA),

(−1)F Bϕ(x) = (−1)|ϕ|ϕ(x).
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Coproducts Formulae

Coproducts

∆(Qlat
A ) = Qlat

A ⊗ 1l + (−1)FTaA ⊗Qlat
A ,

∆(P lat
µ ) = P lat

µ ⊗ 1l + Taµ̂ ⊗ P lat
µ ,

∆(Tb) = Tb ⊗ Tb, ∆
(
(−1)F

)
= (−1)F ⊗ (−1)F .

Cf. Coproducts for the Normal Leibniz Rules

∆(QA) = QA ⊗ 1l + (−1)F1l ⊗QA,

∆(Pµ) = Pµ ⊗ 1l + 1l ⊗ Pµ,

∆(Tb) = Tb ⊗ Tb, ∆
(
(−1)F

)
= (−1)F ⊗ (−1)F .
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Consistency

Products of More Fields

Associativity =⇒ coassociativity:

(ϕ1 · ϕ2) · ϕ3 = ϕ1 · (ϕ2 · ϕ3)

⇓

Qlat
A B(ϕ1 · ϕ2) · ϕ3 = Qlat

A Bϕ1 · (ϕ2 · ϕ3)

⇓

(∆⊗ id) ◦∆ = (id⊗∆) ◦∆.

This holds for our explicit formulae.
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Counit Consistency

Trivial Representation =⇒ Counit

c ∈ C: constant field,

QA B c ≡ ε(QA)c

Consistency
ϕ = 1 · ϕ = ϕ·

⇓

QA Bϕ = QA B
(
1 · ϕ) = QA B

(
1 · ϕ)

⇓

(ε⊗ id) ◦∆ = (id⊗ ε) ◦∆ = id

Counit ε has to be determined to satisfy this consistency.
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Counit & Antipode Formulae

Counits

ε(Qlat
A ) = 0, ε(P lat

µ ) = 0, ε(Tb) = 1, ε
(
(−1)F

)
= 1.

These satisfy the previous consistency conditions.

Antipodes

S(Qlat
A ) = −T−1

aA
· (−1)F ·Qlat

A ,

S(P lat
µ ) = −T−1

aµ̂ · P
lat
µ ,

S(Tb) = T−1
b , S

(
(−1)F

)
= (−1)F .
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Superalgebra on the Lattice

Hopf-Algebraic Superalgebra

A consistent superalgebra on the lattice can be introduced as a

Hopf algebra, with the algebraic structure

{Qlat
A , Q

lat
B } = 2τµABP

lat
µ ,

[Qlat
A , P

lat
µ ] = [P lat

µ , P lat
ν ] = 0,

[Qlat
A , Tb] = [P lat

µ , Tb] = [Tb, Tc] = 0,

{Qlat
A , (−1)F} = [P lat

A , (−1)F ] = [Tb, (−1)F ] = 0,

plus the algebra maps ∆, ε, S.
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Noncommutative Representation?

“Commutative” Representation & Statistics

Hopf algebra is generally represented on a noncommutative thus

nonlocal field space.

In fact, we can reduce the noncommutativity to commutativity

up to a generalized statistics (braiding) by adding a grading

structure.

ϕ⊗ ϕ′ Ψ→ ϕ′ ⊗ ϕ

↓ ↓

QA(ϕ⊗ ϕ′) Ψ→ QA(ϕ′ ⊗ ϕ).
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Generalized Statistics

Generalized Statistics

General braiding formula

Ψ
(
ϕA0···Ap(x)⊗ ϕ′B0···Bq

(y)
)

= (−1)pqϕ′B0···Bq

(
y +

p∑
i=1

(al
Ai
− ar

Ai
)

)

⊗ ϕA0···Ap

(
x−

q∑
i=1

(al
Bi
− ar

Bi
)

)
,

where

ϕA0···Ap := Qlat
Ap
· · ·Qlat

A1
ϕA0, ϕA0 := φ.
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Quantization

Braided QFT [Oeckl]

The braiding structure allows us to construct a QFT

perturbatively with a formal path integral quantization.

Cf. Fock space representation & deformed CCR.

Braided Functional Derivative
δ

δϕ(x)
(ϕ1 · ϕ2) =

δ

δϕ(x)
ϕ1 · ϕ2 + (−1)|ϕ||ϕ1|Tϕϕ1 ·

δ

δϕ(x)
ϕ2

Path Integral ∫
δ

δϕ(x)
= 0
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Ward–Takahashi Identity

Correlation Functions

The formal expression is enough to define & compute

Z =
∫
e−S, 〈ϕ1 · · ·ϕn〉 =

1

Z

∫
ϕ1 · · ·ϕne−S.

Ward–Takahashi Identity [Sasai–Sasakura]

The Hopf-algebraic supersymmetry is expressed by the

corresponding Ward–Takahashi identities

aB〈ϕ1 · · ·ϕn〉 = ε(a)〈ϕ1 · · ·ϕn〉.
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Summary and Discussion

Summary

We can introduce a Hopf algebra on a lattice as a

lattice-deformed superalgebra.

A consistency requires that the fields representing the Hopf

algebra acquire a generalized statistics.

The corresponding QFT can be constructed at least

perturbatively.

Discussion

Nonperturbative/“simulationable” path integral definition?

Gauge theory extension, & its strong coupling expansion?

Connection with the other regularization approaches?
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