Nonlinear SUSY General Relativity:
L-NL SUSY Structure and Physical Meanings

Kazunari Shima
(Saitama Institute of Technology)
July 23, 2010

OUTLINE

1. Motivation
2. Nonlinear Supersymmetric General Relativity Theory (NLSUSY GR)
3. Linear-Nonlinear SUSY relation
4. Cosmology and Low Energy Particle Physics of NLSUSY GR
5. Summary
1. Motivation

SUSY and its spontaneous breakdown are essentially related to the space-time symmetry, therefore, to be studied in the low energy particle physics and in the cosmology as well.

We have found group theoretically:

- The SM with just three generations emerges in single irreducible representation of $SO(10)$ superPoincaré(sP),
- This is unique among all $SO(N)$ sP provided $SO(10)$ sP with $\underline{10} = \underline{5} + \underline{5}^*$, $\underline{5}_{SU(5)GUT}$ for $SO(10) \supset SU(5)$ is preserved.

$SO(N>8)$ Linear(L) SUSY \implies no-go theorem in S-matrix!
A way to **field theoretical** breakthrough:

We show in this talk:

- The **nonlinear** (NL) SUSY invariant coupling of spin $\frac{1}{2}$ fermion with spin 2 graviton is crucial to circumvent the no-go theorem of S-matrix arguments for $\text{SO}(N>8)$ **Linear SUSY**.

- This is attributed to the geometrical structure of particular (empty) space-time unifying two notions:

 the object (spin $\frac{1}{2}$ **NLSUSY**) and the background space-time manifold (**general relativity**).

- We may be tempted to imagine that there may be a certain composite structure behind the SM.
2. Nonlinear Supersymmetric General Relativity (NLSUSY GR)

Geometrical arguments of Einstein general relativity (EGR) on Riemann space-time are extended to new space-time inspired by nonlinear (NL) SUSY:

The tangent space-time of new space-time is specified by the SL(2,C) Grassman coordinates ψ_α of NLSUSY besides the ordinary SO(1,3) Minkowski coordinate x^a,

i.e. ψ_α is the local NLSUSY d.o.f turning subsequently to the NG fermion d.o.f. (called superon hereafter) of the coset space $\frac{\text{superGL}(4,R)}{\text{GL}(4,R)}$ and x^a are attached at every curved space-time point.
Ultimate shape of nature

w^a_{μ}: unified vierbein

$\{x^a, \psi^i_\alpha\}$

$w^a_{\mu} \rightarrow \delta^a_\mu$

SGM spacetime

(asymptotic)

Homomorphic non-compact groups $SO(1,3)$ and $SL(2,C)$ for space-time d.o.f. are analogous to compact groups $SO(3)$ and $SU(2)$ for gauge d.o.f. of 't Hooft-Polyakov monopole.

- Note that $SO(1, D - 1) \cong SL(d, C)$ holds only for $D = 4, d = 2$.

the prediction of 4 dimensional spacetime
A brief review of NLSUSY:

- Take flat space-time specified by x^a and ψ_α.
- Consider one form $\omega_a = dx_a - \frac{\kappa^2}{2i}(\bar{\psi}\gamma^a d\psi - d\bar{\psi}\gamma^a\psi)$.
- $\delta\omega_a = 0$ under $\delta x_a = i\kappa^2 \frac{1}{2i}(\bar{\zeta}\gamma^a \psi - \bar{\psi}\gamma^a \zeta)$ and $\delta \psi = \zeta$ with a global spinor parameter ζ and κ is a dimensionful arbitrary constant.
- An invariant action (\sim invariant volume) is obtained:

$$S = -\frac{1}{2\kappa^2} \int \omega_0 \wedge \omega_1 \wedge \omega_2 \wedge \omega_3 = \int d^4x L_{VA}$$

- N=1 Volkov-Akulov model of NLSUSY is given by

$$L_{VA} = -\frac{1}{2\kappa^2} |w_{VA}| = -\frac{1}{2\kappa^2} \left[1 + t^{ab} \frac{1}{2} (t_{ab} t^b - t^a t^b) + \ldots \right],$$

$$|w_{VA}| = \det w_{ab} = \det (\delta_{ab} + t^{ab}),$$

$$t^{ab} = -i\kappa^2 (\bar{\psi}\gamma^a \partial_b \psi - \bar{\psi}\gamma^a \partial_b \psi),$$

which is invariant under N=1 NLSUSY transformation,

$$\delta_{\zeta} \psi = \frac{1}{\kappa} \zeta - i\kappa (\bar{\zeta}\gamma^a \psi - \bar{\psi}\gamma^a \zeta) \partial_a \psi. \quad \text{NG fermion for SB SUSY}$$

- ψ is NG fermion (the coset space coordinate) of $\frac{\text{Super-Poincare}}{\text{Poincare}}$.

We have found:

- parallel arguments to the Einstein general relativity (EG) theory on Riemann space-time is possible on new (SGM) space-time as well.

- Unified vierbein of new space-time

\[w^a_{\mu}(x) = e^a_{\mu} + t^a_{\mu}(\psi), \]

\[w^a_{\mu}(x) = e^a_{\mu} - t^a_{\mu} + t^\mu_{\rho} t^\rho a - t^\mu_{\sigma} t^\sigma_{\rho} t^\rho a + t^\mu_{\kappa} t^\kappa_{\sigma} t^\sigma_{\rho} t^\rho a, \]

\[w^a_{\mu}(x) w^b_{\mu}(x) = \delta^a_b \]

- \textit{N}-extended NLSUSY GR action of the vacuum EH-type in new empty space-time,
N-extended NLSUSY GR action:

\[L_{\text{NLSUSY GR}}(w) = -\frac{c^4}{16\pi G} |w|(\Omega(w) + \Lambda), \]

\[|w| = \det w^a_{\mu} = \det(e^a_{\mu} + t^a_{\mu}(\psi)), \]

\[t^a_{\mu}(\psi) = \frac{\kappa^2}{2i} (\bar{\psi}^I \gamma^a \partial_\mu \psi^I - \partial_\mu \bar{\psi}^I \gamma^a \psi^I), (I = 1, 2, .., N) \]

- \(w^a_{\mu}(x) = e^a_{\mu} + t^a_{\mu}(\psi) \): the unified vierbein of new space-time,
- \(\Omega(w) \): the unified scalar curvature of new space-time,
- \(e^a_{\mu}(x) \): the ordinary vierbein for the local SO(1,3) of EGR,
- \(t^a_{\mu}(\psi(x)) \): the mimic vierbein for the local SL(2,C) composed of the stress-energy-momentum of NG fermion \(\psi(x)^I \) (called superons),
- \(s_{\mu\nu} \equiv w^a_{\mu} \eta_{ab} w^b_{\nu} \) and \(s^{\mu\nu}(x) \equiv w^{\mu\alpha}(x) w^{\nu\alpha}(x) \) are unified metric tensors of new space-time.
• G is the (Newton) gravitational constant.

• Λ : (small) cosmological constant indicating the NLSUSY structure of new space-time.

• No-go theorem has been circumvented in a sense that $SO(N > 8) \text{ SUSY}$ with the non-trivial gravitational interaction and with $\Delta J = \frac{3}{2}$ has been constructed by using NLSUSY, i.e. the vacuum degeneracy.

• Note that $SO(1, D - 1) \cong SL(d, C)$ holds only for $D = 4, d = 2$.

NLSUSYGR(SGM) scenario predicts the 4 dimensional spacetime
Remarkably the constant κ^2 with the dimension $(\text{length})^4$, which is arbitrary in NLSUSY model so far, is now fixed to

$$\kappa^2 = \left(\frac{c^4 \Lambda}{8\pi G} \right)^{-1}$$

by NLSUSY GR scenario.

Also the plus sign of Λ in the action is now fixed uniquely to give the correct sign to the kinetic term of $\psi(x)$, which indicates:

(i) the positive potential minimum for $w^a_{\mu}(x)$
and
(ii) the dark energy density interpretation of Λ for the present universe acceleration (in Sec.4).
Symmetries of NLSUSY GR(N-extended SGM action)

- NLSUSY GR action is invariant at least under the following space-time symmetries which is isomorphic to SP:

\[
\text{[NLSUSY]} \otimes [\text{local } \text{GL}(4, \mathbb{R})] \otimes [\text{local Lorentz}] \otimes [\text{local spinor translation}]
\] (4)

and the following internal symmetries for N-extended NLSUSY GR (with N-superons \(\psi^I (I = 1, 2, \ldots N)\)):

\[
[\text{global } \text{SO}(N)] \otimes [\text{local } \text{U}(1)^N] \otimes [\text{chiral}].
\] (5)
For example:

- NLSUSY GR (1) is **invariant under the new NLSUSY transformation**;

\[
\delta_{\zeta I} \psi = \frac{1}{\kappa} \zeta^I - i\kappa \bar{\zeta}^J \gamma^\rho \psi^J \partial_\rho \psi^I, \quad \delta_{\zeta} e^a_\mu = i\kappa \bar{\zeta}^J \gamma^\rho \psi^J \partial_{[\mu} e^a_{\rho]},
\]

which induce remarkably GL(4,R) transformations on \(w^a_\mu \) and the unified metric \(s_{\mu\nu} \)

\[
\delta_{\zeta} w^a_\mu = \xi^\nu \partial_\nu w^a_\mu + \partial_\mu \xi^\nu w^a_\nu, \quad \delta_{\zeta} s_{\mu\nu} = \xi^\kappa \partial_\kappa s_{\mu\nu} + \partial_\mu \xi^\kappa s_{\kappa\nu} + \partial_\nu \xi^\kappa s_{\mu\kappa},
\]

where \(\zeta \) is a constant spinor parameter, \(\partial_{[\rho} e^a_{\mu]} = \partial_\rho e^a_\mu - \partial_\mu e^a_\rho \) and \(\xi^\rho = -i\kappa \bar{\zeta}^I \gamma^\rho \psi^I \).

- Commutators of new NLSUSY transformations close on GL(4,R),

\[
[\delta_{\zeta_1}, \delta_{\zeta_2}] \psi^I = \Xi^\mu \partial_\mu \psi^I, \quad [\delta_{\zeta_1}, \delta_{\zeta_2}] e^a_\mu = \Xi^\rho \partial_\rho e^a_\mu + e^a_\rho \partial_\mu \Xi^\rho,
\]

where \(\Xi^\mu = 2i\bar{\zeta}^I_1 \gamma^\mu \zeta^I_2 - \xi^\rho_1 \xi^\sigma_2 e^a_\mu \partial_{[\rho} e^a_{\sigma]} \). **Q.E.D.**

i.e. new NLSUSY (6) is the square-root of GL(4,R);

\[
[\delta_1, \delta_2] = \delta_{GL(4R)}, \quad \text{i.e. } \delta_1 \sim \sqrt{\delta_{GL(4R)}}.
\]
(The ordinary $\text{GL}(4\mathbb{R})$ invariance of $L(w(x))$ is trivial by the construction.)

c.f. SUGRA(SUSY)

$$[\delta_1, \delta_2] = \delta P + (\delta_L) + \delta_g$$
• NLSUSY GR (1) is **invariant under the local Lorentz transformation**;

\[\delta_L w^a_{\mu} = \epsilon^a_b w^b_{\mu} \]

with the local parameter \(\epsilon_{ab} = (1/2)\epsilon_{[ab]}(x) \)

or equivalently on \(\psi^i \) and \(e_{a\mu} \)

\[\delta_L \psi^I = -\frac{i}{2}\epsilon_{ab}\sigma^{ab}\psi^I, \quad \delta_L e^a_{\mu} = e^a_b e^b_{\mu} + \frac{\kappa^4}{4}\epsilon^{abcd}\bar{\psi}^I\gamma_5\gamma_\mu\gamma^I(\partial_\mu\epsilon_{bc}). \]

The local Lorentz transformation forms a closed algebra, for example, on \(e^a_{\mu}(x) \)

\[[\delta_{L_1}, \delta_{L_2}] e^a_{\mu} = \beta^a_b e^b_{\mu} + \frac{\kappa^4}{4}\epsilon^{abcd}\bar{\psi}^j\gamma_5\gamma_\mu\gamma^j(\partial_\mu\beta_{bc}). \]

where \(\beta_{ab} = -\beta_{ba} \) is defined by \(\beta_{ab} = \epsilon_{2ac}\epsilon_{1}^c_b - \epsilon_{2bc}\epsilon_{1}^c_a \). **Q.E.D.**
Big Decay of new space-time:

New space-time described by NLSUSY GR action (1) is **unstable** due to the global NLSUSY structure of tangent space-time and breaks down spontaneously to ordinary Riemann space-time (EH action) with superons (NG fermion) as follows (called SGM action):

$$L(w) = L_{SGM}(e, \psi) = -\frac{c^4}{16\pi G}|e|\{R(e) + |w_{VA}|\Lambda + \tilde{T}(e, \psi)\}. \tag{12}$$

- $R(e)$: the scalar curvature of EH action
- Λ: the cosmological term
- $\tilde{T}(e, \psi)$: the gravitational interaction of superon.

- $L_{SGM}(e, \psi)$ produces N-extended NLSUSY action with $\kappa^2 = \left(\frac{c^4\Lambda}{8\pi G}\right)^{-1}$ in asymptotic Riemann-flat $(e^a_\mu(x) \rightarrow \delta^a_\mu)$ space-time.
w^a_μ : unified vierbein

SGM spacetime

e^a_μ : ordinary vierbein

Riemann spacetime \oplus matter

$\{x^a, \psi^i_\alpha\}$

$\{x^\mu\}$

$w^a_\mu \rightarrow \delta^a_\mu$

Λ

\downarrow(Big Decay)

ψ^i_α, Λ

$e^a_\mu \rightarrow \delta^a_\mu$

(asymptotic)
3. Linear - Nonlinear SUSY Relation

Due to the high nonlinearity the physical consequences of $L_{SGM}(e, \psi)$ is unclear.

However,

• N-LSUSY theory related(equivalent) to N-NLSUSY theory can be constructed by persisting the SUSY algebra (in flat spacetime, at moment).

\[\iff \text{NL/L SUSY relations} \]

• The systematics for establishing NL/L SUSY relation are well understood and carried out for $N=1,2,3$ SUSY in flat space-time.

NL/L SUSY relation describes the vacuum structure of SGM action.
Extracting low energy particle physics of SGM action for $N=2$:

- $N=2$ SUSY gives the minimal and physical (realistic) SUSY model in SGM scenario.

Because $J^P = 1^- \ U(1)$ geuge field appears in $N \geq 2$ SUSY.

\implies MSSM in SGM scenario is $N = 2$ LSUSY model.

- $N=2$ SGM in asymptotic Riemann-flat ($e^a\mu(x) \to \delta^a\mu$) space-time, where

$$L_{N=2SGM}(e, \psi) \to L_{N=2NLSUSY}(\psi) : \text{cosmological term of SGM.}$$
The arguments are in two dimensional space-time for simplicity:

- **N=2, d=2 NLSUSY model** is given by

\[
L_{VA} = -\frac{1}{2\kappa^2}|w_{VA}| = -\frac{1}{2\kappa^2}\left[1 + t^a_a + \frac{1}{2}(t^a_at^b_b - t^a bt^b_a) + \cdots\right], \quad (13)
\]

where,
\[
|w_{VA}| = \det w^a_b = \det(\delta^a_b + t^a_b),
\]
\[
t^a_b = -i\kappa^2(\bar{\psi}_j\gamma^a\partial_b\psi^j - \bar{\psi}_j\gamma^a\partial_b\psi^j), \quad (j = 1, 2),
\]

which is invariant under N=2 NLSUSY transformation,
\[
\delta_{\zeta}\psi^j = \frac{1}{\kappa}\zeta^j - i\kappa(\bar{\zeta}_k\gamma^a\psi^k - \bar{\zeta}_k\gamma^a\psi^k)\partial_a\psi^j, \quad (j = 1, 2).
\]
• **N=2 LSUSY Theory:**

• Helicity states of N=2 vector supermultiplet:

\[
\begin{pmatrix}
+1 \\
+\frac{1}{2}, +\frac{1}{2} \\
0
\end{pmatrix} + [\text{CPT conjugate}]
\]

corresponds to **N=2 LSUSY off-shell vector supermultiplet:**
\((v^a, \lambda^i, A, \phi, D; i=1,2)\). in WZ.

• Helicity states of N=2 scalar supermultiplet:

\[
\begin{pmatrix}
+\frac{1}{2} \\
0, 0 \\
-\frac{1}{2}
\end{pmatrix} + [\text{CPT conjugate}]
\]

corresponds to **N=2 LSUSY two scalar supermultiplets:**
\((\chi, B^i, \nu, F^i; \ i = 1, 2)\).
• The most general $N = 2$ LSUSYQED action:

$$L_{N=2\text{LSUSYQED}} = L_{V0} + L'_{\Phi0} + L_e + L_{Vf} + L_{Vm},$$ \hspace{1cm} (14)$$

\begin{align*}
L_{V0} &= -\frac{1}{4}(F_{ab})^2 + \frac{i}{2}\bar{\lambda}^i \partial \lambda^i + \frac{1}{2}(\partial_a A)^2 + \frac{1}{2}(\partial_a \phi)^2 + \frac{1}{2}D^2 - \frac{\xi}{\kappa}D, \\
L'_{\Phi0} &= \frac{i}{2}\bar{\chi} \partial \chi + \frac{1}{2}(\partial_a B^i)^2 + \frac{i}{2}\bar{\nu} \partial \nu + \frac{1}{2}(F^i)^2, \\
L_e &= e \left\{ i v_a \bar{\lambda}^a \gamma^a \nu - \epsilon^{ij} v^a B^i \partial_a B^j + \frac{1}{2}A(\bar{\chi} \chi + \bar{\nu} \nu) - \phi \bar{\chi} \gamma_5 \nu \\
&\quad + B^i(\bar{\lambda}^i \chi - \epsilon^{ij} \bar{\lambda}^j \nu) - \frac{1}{2}(B^i)^2 D \right\} + \frac{1}{2}e^2(v^2 - A^2 - \phi^2)(B^i)^2, \\
L_{Vf} &= f\{ A \bar{\lambda}^i \chi + \epsilon^{ij} \phi \bar{\lambda}^i \gamma_5 \lambda^j + (A^2 - \phi^2)D - \epsilon^{ab} A \phi F_{ab} \}, \\
L_{Vm} &= -\frac{1}{2}m (\bar{\lambda}^i \lambda^i - 2AD + \epsilon^{ab} \phi F_{ab}).$$ \hspace{1cm} (15)$$

To see explicitly the local gauge invariance of the action, we define a complex (Dirac) spinor field χ_D and complex scalar fields (B^i, F^i) by

$$\chi_D = \frac{1}{\sqrt{2}}(\chi + i\nu), \quad B = \frac{1}{\sqrt{2}}(B^1 + iB^2), \quad F = \frac{1}{\sqrt{2}}(F^1 - iF^2),$$ \hspace{1cm} (16)

and substitute them into $S_{\Phi_0}' + S_e$ in the action we obtain

$$S_{\Phi_0}' + S_e = \int d^2x \left\{ i\bar{\chi}_D \mathcal{D} \chi_D + |D_a B|^2 + |F|^2
ight.$$ \hspace{1cm}

$$+ e(\bar{\chi}_D \lambda B + \bar{\lambda} \chi_D B^* - D|B|^2 + \bar{\chi}_D \chi_D A + i\bar{\chi}_D \gamma_5 \chi_D \phi)$$ \hspace{1cm}

$$- e^2(A^2 + \phi^2)|B|^2 \right\} + [\text{surface term }],$$ \hspace{1cm} (17)

with the covariant derivative $\mathcal{D}_a = \partial_a - iev_a$ and $\lambda = \frac{1}{\sqrt{2}}(\lambda^1 - i\lambda^2)$.
We can see the action is invariant under the ordinary local $U(1)$ gauge transformations,

$$(\chi_D, B, F) \to (\chi'_D, B', F')(x) = e^{i\theta(x)}(\chi_D, B, F)(x),$$

$$v_a \to v'_a(x) = v_a(x) + \frac{1}{e} \partial_a \theta(x). \tag{18}$$

The commutor algebra for the fields (16) is also computed as

$$[\delta Q_1, \delta Q_2] = \delta_g(D), \tag{19}$$

where $\delta_g(D)$ means a gauge covariant transformation according to

$$D = \Xi^a \partial_a + ie\theta.$$
\(L_{N=2\text{LSUSYQED}} \) is invariant under \(N = 2 \) LSUSY parametrized by \(\zeta^i \).

- For the vector off-shell supermultiplet:

\[
\begin{align*}
\delta_\zeta v^a &= -i\epsilon^{ij} \zeta^i \gamma^a \lambda^j, \\
\delta_\zeta \lambda^i &= (D - i\phi A)\zeta^i + \frac{1}{2} \epsilon^{ab} \epsilon^{ij} F_{ab} \gamma^5 \zeta^j - i\epsilon^{ij} \gamma^5 \phi \zeta^j, \\
\delta_\zeta A &= \tilde{\zeta}^i \lambda^i, \\
\delta_\zeta \phi &= -\epsilon^{ij} \tilde{\zeta}^i \gamma^5 \lambda^j, \\
\delta_\zeta D &= -i\tilde{\zeta}^i \phi \lambda^i.
\end{align*}
\]

(20)

\[
[\delta_{Q1}, \delta_{Q2}] = \delta_P(\Xi^a) + \delta_g(\theta),
\]

(21)

where \(\delta_g(\theta) \) is the \(U(1) \) gauge transformation only for \(v^a \) with \(\theta = -2(i\zeta_1^i \gamma^a \zeta_2^i v_a - \epsilon^{ij} \zeta_1^i \zeta_2^j A - \tilde{\zeta}_1^i \gamma^5 \zeta_2^i \phi) \).
For the two scalar off-shell supermultiplets:

\[
\delta \zeta \chi = (F^i - i \partial B^i) \zeta^i - e \epsilon^{ij} V^i B^j,
\]
\[
\delta \zeta B^i = \bar{\zeta}^i \chi - e \epsilon^{ij} \bar{\zeta}^j \nu,
\]
\[
\delta \zeta \nu = e \epsilon^{ij} (F^i + i \partial B^i) \zeta^j + e V^i B^i,
\]
\[
\delta \zeta F^i = -i \bar{\zeta}^i \partial \chi - i e \epsilon^{ij} \bar{\zeta}^j \partial \nu
\]
\[
- e \{e \epsilon^{ij} \bar{V}^j \chi - \bar{V}^i \nu + (\bar{\zeta}^i \lambda^j + \bar{\zeta}^j \lambda^i) B^j - \bar{\zeta}^j \lambda^j B^i \},
\]
\[
[\delta_{\zeta_1}, \delta_{\zeta_2}] \chi = \Xi^a \partial_a \chi - e \theta \nu,
\]
\[
[\delta_{\zeta_1}, \delta_{\zeta_2}] B^i = \Xi^a \partial_a B^i - e e^{ij} \theta B^j,
\]
\[
[\delta_{\zeta_1}, \delta_{\zeta_2}] \nu = \Xi^a \partial_a \nu + e \theta \chi,
\]
\[
[\delta_{\zeta_1}, \delta_{\zeta_2}] F^i = \Xi^a \partial_a F^i + e e^{ij} \theta F^j,
\]

with \(V^i = i \nu_a \gamma^a \zeta^i - \epsilon^{ij} A \zeta^j - \phi \gamma_5 \zeta^i \) and the U(1) gauge parameter \(\theta \).
The NL/L SUSY relation:

\[L_{N=2LSUSY_{QED}} = L_{N=2NLSUSY} + \text{[surface terms]}, \quad (23) \]

is established by SUSY invariant relations.

- SUSY invariant relations express uniquely all component fields of LSUSY supermultiplet as the composites of superons \(\psi_j \) of NLSUSY:

\[\sim \kappa^{n-1}(\psi^i)^n|w| + \cdots. \quad (24) \]

- Taking the NLSUSY transformations of the constituent superons \(\psi^j \) in SUSY invariant relations reproduce the familiar LSUSY transformations among the component fields of the supermultiplet.
• **SUSY invariant relations**ns for the vector off-shell supermultiplet:

\[
\begin{align*}
\nu^a &= -\frac{i}{2} \xi \kappa \epsilon^{ij} \overline{\psi}^i \gamma^a \psi^j |w|, \\
\lambda^i &= \xi \psi^i |w|, \\
A &= \frac{1}{2} \xi \kappa \overline{\psi}^i \psi^i |w|, \\
\phi &= -\frac{1}{2} \xi \kappa \epsilon^{ij} \overline{\psi}^i \gamma_5 \psi^j |w|, \\
D &= \frac{\xi}{\kappa} |w|.
\end{align*}
\] (25)

• Note that the global **SU(2)** emerges for N=2, d=4 SGM.
SUSY invariant relations for scalar off-shell supermultiplets:

\[\chi = \xi^i \left[\psi^i |w| + \frac{i}{2} \kappa^2 \partial_a \{ \gamma^a \psi^i \bar{\psi}^j \psi^j |w| \} \right] \]

\[B^i = -\kappa \left(\frac{1}{2} \xi^i \bar{\psi}^j \psi^j - \xi^j \bar{\psi}^i \psi^j \right) |w| , \]

\[\nu = \xi^i \epsilon^{ij} \left[\psi^j |w| + \frac{i}{2} \kappa^2 \partial_a \{ \gamma^a \psi^j \bar{\psi}^k \psi^k |w| \} \right] , \]

\[\tilde{F}^i = \frac{1}{\kappa} \xi^i \left\{ |w| + \frac{1}{8} \kappa^3 \partial_a \partial^a (\bar{\psi}^j \psi^j \bar{\psi}^k \psi^k |w|) \right\} - i \kappa \xi^j \partial_a (\bar{\psi}^i \gamma^a \psi^j |w|) \]

\[- \frac{1}{4} e \kappa^2 \xi^i \bar{\psi}^j \psi^j \bar{\psi}^k \psi^k |w| . \]

The quartic fermion self-interaction term in \(\tilde{F}^i \) is the origin of the local \(U(1) \) gauge symmetry of LSUSY.
SUSY invariant relations produce a new off-shell commutator algebra which closes on only a translation:

\[[\delta_Q(\zeta_1), \delta_Q(\zeta_2)] = \delta_P(v), \]

(27)

where \(\delta_P(v) \) is a translation with a parameter

\[v^a = 2i(\bar{\zeta}_1^L \gamma^a \zeta_2^L - \bar{\zeta}_1^R \gamma^a \zeta_2^R) \]

(28)

• Note that the commutator does not induce the U(1) gauge transformation, which is different from the ordinary LSUSY.
• Substituting these SUSY invariant relations into $L_{N=2LSUSY QED}$, we find NL/L SUSY relations:

$$L_{N=2LSUSY QED} = f(\xi, \xi^i)L_{N=2NLSUSY} + \text{[surface terms]}, \quad (29)$$

$$f(\xi, \xi^i) = \xi^2 - (\xi^i)^2 = 1. \quad (30)$$

\Rightarrow composite eigenstates of global space-time (bulk) symmetry !?

• NL/L SUSY relation connects the cosmology and the low energy particle physics in NLSUSY GR (in Sec. 4).

• The direct linearization of highly nonlinear SGM action (12), i.e. the construction of an equivalent and renormalizable broken LSUSY field theory of the LSUSY supermultiplet, remains to be carried out.

Broken \mathcal{N}-LSUSY(SUSYQCD) theory emerges as composites states in the true vacuum of \mathcal{N}-NLSUSY.
The SUSY invariant relations
\[\Rightarrow \]
are systematically obtained in the superfield formulation.

Linearization of NLSUSY in the \(d = 2 \) superfield formulation

- **General superfields are given for the** \(N = 2 \) **vector supermultiplet by**

\[
\mathcal{V}(x, \theta^i) = C(x) + \bar{\theta}^i \Lambda^i(x) + \frac{1}{2} \bar{\theta}^i \theta^j M^{ij}(x) - \frac{1}{2} \bar{\theta}^i \theta^i M^{jj}(x) + \frac{1}{4} \epsilon^{ij} \bar{\theta}^i \gamma_5 \theta^j \phi(x) \\
- \frac{i}{4} \epsilon^{ij} \bar{\theta}^i \gamma_\alpha \theta^j \nu^a(x) - \frac{1}{2} \bar{\theta}^i \theta^i \bar{\theta}^j \lambda^j(x) - \frac{1}{8} \bar{\theta}^i \theta^i \bar{\theta}^j \theta^j D(x),
\]

(31)

and for the \(N = 2 \) **scalar supermultiplet by**

\[
\Phi^i(x, \theta^i) = B^i(x) + \bar{\theta}^i \chi(x) - \epsilon^{ij} \bar{\theta}^j \nu(x) - \frac{1}{2} \bar{\theta}^j \theta^j F^i(x) + \bar{\theta}^i \theta^j F^j(x) - i \bar{\theta}^i \partial B^j(x) \theta^j \\
+ \frac{i}{2} \bar{\theta}^j \theta^j (\bar{\theta}^i \partial \chi(x) - \epsilon^{ik} \bar{\theta}^k \partial \nu(x)) + \frac{1}{8} \bar{\theta}^j \theta^j \bar{\theta}^k \theta^k \partial_a \partial^a B^i(x).
\]

(32)
Consider the general superfields on the following ψ^i-dependent specific supertranslations, ← ordinary LSUSY with $-\kappa \psi(x)$,

$$x'^a = x^a + i\kappa \bar{\theta}^i \gamma^a \psi^i, \quad \theta'^i = \theta^i - \kappa \psi^i,$$

(33)

and we denote the general superfields on (x'^a, θ'^i) by

$$\tilde{\mathcal{V}}(x^a, \theta^i; \psi^i(x)) = \mathcal{V}(x'^a, \theta'^i), \quad \tilde{\Phi}(x^a, \theta^i; \psi^i(x)) = \Phi(x'^a, \theta'^i).$$

(34)

Under the translation on (x'^a, θ'^i), i.e. hybrid global SUSY transformation, $\delta^h = \delta^L(x, \theta) + \delta^{NL}(\psi)$:

$$\delta^h \tilde{\mathcal{V}}(x^a, \theta^i; \psi^i(x)) = \xi_\mu \partial^\mu \tilde{\mathcal{V}}(x^a, \theta^i; \psi^i(x)), \quad \delta^h \tilde{\Phi}(x^a, \theta^i; \psi^i(x)) = \xi_\mu \partial^\mu \tilde{\Phi}(x^a, \theta^i; \psi^i(x)),$$

(35)

Therefore, the following conditions, i.e. SUSY invariant constraints available for eliminating the other d.o.f. than $\varphi^I_V(x), \varphi^I_\Phi(x)$ and ψ^i, can be imposed,

$$\tilde{\varphi}^I_V(x) = \text{constant}, \quad \tilde{\varphi}^I_\Phi(x) = \text{constant},$$

(36)

which are invariant (conserved quantities) under hybrid supertransformations.
• Putting constants as follows:

\[\tilde{C} = \xi_c, \quad \tilde{\Lambda}^i = \xi^i_{\Lambda}, \quad \tilde{M}^{ij} = \xi^{ij}_{M}, \quad \tilde{\phi} = \xi_{\phi}, \quad \tilde{v}^a = \xi^a_v, \quad \tilde{\lambda}^i = \xi^i_{\lambda}, \quad \tilde{D} = \frac{\xi}{\kappa}, \quad (37) \]

\[\tilde{B}^i = \xi^i_B, \quad \tilde{\chi} = \xi_{\chi}, \quad \tilde{\nu} = \xi_{\nu}, \quad \tilde{F}^i = \frac{\xi^i}{\kappa}, \quad (38) \]

where the mass dimensions of constants (or constant spinors) in \(d = 2 \) are defined by \((-1, \frac{1}{2}, 0, 0, 0, -\frac{1}{2})\) for \((\xi_c, \xi^i_{\Lambda}, \xi^{ij}_{M}, \xi_{\phi}, \xi^a_v, \xi^i_{\lambda})\), \((0, -\frac{1}{2}, -\frac{1}{2})\) for \((\xi^i_B, \xi_{\chi}, \xi_{\nu})\) and 0 for \(\xi^i\) for convenience.

• SUSY invariant relations \(\varphi^I_V = \varphi^I_V(\psi) \) are calculated systematically and straightforwardly as

\[
C = \xi_c + \kappa \bar{\psi}^i \xi^i_{\Lambda} + \frac{1}{2} \kappa^2 (\xi^{ij}_{M} \bar{\psi}^i \psi^j - \xi^{ii}_{M} \bar{\psi}^j \psi^j) + \frac{1}{4} \xi_{\phi} \kappa^2 \epsilon^{ij} \bar{\psi}^i \gamma_5 \psi^j - \frac{i}{4} \xi^a_v \kappa^2 \epsilon^{ij} \bar{\psi}^i \gamma_a \psi^j - \frac{1}{2} \kappa^3 \bar{\psi}^i \psi^i \bar{\psi}^j \xi^j_{\lambda} - \frac{1}{8} \xi \kappa^3 \bar{\psi}^i \psi^i \bar{\psi}^j \psi^j,
\]

\[
\Lambda^i = \xi^i_{\Lambda} + \kappa (\xi^{ij}_{M} \psi^j - \xi^{jj}_{M} \psi^i) + \frac{1}{2} \xi_{\phi} \kappa \epsilon^{ij} \gamma_5 \psi^j - \frac{i}{2} \xi^a_v \kappa \epsilon^{ij} \gamma_a \psi^j
\]
\[-\frac{1}{2}\xi^i \kappa^2 \bar{\psi}^j \psi^j + \frac{1}{2} \kappa^2 (\psi^j \bar{\psi}^i \xi^j - \gamma_5 \psi^j \bar{\psi}^i \gamma_5 \xi^j - \gamma_a \psi^j \bar{\psi}^i \gamma^a \xi^j)\]

\[-\frac{1}{2} \xi \kappa^2 \bar{\psi}^i \psi^j - i \kappa \bar{\phi} C(\psi) \psi^i,\]

\[M^{ij} = \xi^{ij}_M + \kappa \bar{\psi}^{(i} \xi^{j)} + \frac{1}{2} \xi \kappa \bar{\psi}^{i} \psi^{j} + i \kappa \epsilon^{(i} \kappa \bar{\psi}^{l} \psi^{j} \partial \Lambda^l (\psi) - \frac{1}{2} \kappa^2 \epsilon^{i} \epsilon^{j} \bar{\psi}^{k} \psi^{l} \partial^2 C(\psi),\]

\[\phi = \xi^i - \kappa \epsilon^{ij} \bar{\psi}^{i} \gamma_5 \xi^j - \frac{1}{2} \xi \kappa \epsilon^{ij} \bar{\psi}^{i} \gamma_5 \psi^j - i \kappa \epsilon^{ij} \bar{\psi}^{i} \gamma_5 \partial \Lambda^j (\psi) + \frac{1}{2} \kappa^2 \epsilon^{ij} \bar{\psi}^{i} \gamma_5 \psi^j \partial^2 C(\psi),\]

\[v^a = \xi^a_v - i \kappa \epsilon^{ij} \bar{\psi}^{i} \gamma^a \xi^j - \frac{i}{2} \xi \kappa \epsilon^{ij} \bar{\psi}^{i} \gamma^a \psi^j - \kappa \epsilon^{ij} \bar{\psi}^{i} \partial \gamma^a \Lambda^j (\psi) + \frac{i}{2} \kappa^2 \epsilon^{ij} \bar{\psi}^{i} \gamma^a \psi^j \partial^2 C(\psi)\]

\[-i \kappa^2 \epsilon^{ij} \bar{\psi}^{i} \gamma^b \psi^j \partial^a \partial_b C(\psi),\]

\[\lambda^i = \xi^i_\lambda + \xi \psi^i - i \kappa \bar{\phi} M^{ij} (\psi) \psi^j + \frac{i}{2} \kappa \epsilon^{a b} \epsilon^{i j} \gamma^a \psi^j \partial_b \phi (\psi)\]

\[-\frac{1}{2} \kappa \epsilon^{i j} \left\{ \psi^j \partial_a v^a (\psi) - \frac{1}{2} \epsilon^{a b} \gamma_5 \psi^j F_{a b} (\psi) \right\}\]

\[-\frac{1}{2} \kappa^2 \{ \partial^2 \Lambda^i (\psi) \bar{\psi}^j \psi^j - \partial^2 \Lambda^j (\psi) \bar{\psi}^i \psi^j - \gamma_5 \partial^2 \Lambda^j (\psi) \bar{\psi}^i \gamma_5 \psi^j\]
\[-\gamma_a \partial^2 \Lambda^j (\psi) \bar{\psi}^i \gamma^a \psi^j + 2 \partial \partial_a \Lambda^j (\psi) \bar{\psi}^i \gamma^a \psi^j \} - \frac{i}{2} \kappa^3 \partial \partial^2 C(\psi) \psi^i \bar{\psi}^j \psi^j,\]

\[D = \frac{\xi}{\kappa} - i \kappa \bar{\psi}^i \partial \lambda^i (\psi) \]

\[+ \frac{1}{2} \kappa^2 \left\{ \bar{\psi}^i \psi^j \partial^2 M^{ij} (\psi) - \frac{1}{2} \epsilon^{ij} \bar{\psi}^i \gamma_5 \psi^j \partial^2 \phi (\psi) \right\} \]

\[+ \frac{i}{2} \epsilon^{ij} \bar{\psi}^i \gamma_a \psi^j \partial^2 v^a (\psi) - i \epsilon^{ij} \bar{\psi}^i \gamma_a \psi^j \partial_a \partial_b v^b (\psi) \right\} \]

\[- \frac{i}{2} \kappa^3 \bar{\psi}^i \psi^j \bar{\psi}^j \partial^2 \Lambda^i (\psi) + \frac{1}{8} \kappa^4 \bar{\psi}^i \psi^i \bar{\psi}^j \psi^j \partial^4 C (\psi), \] (39)

while the SUSY invariant relations \(\phi^I_\Phi = \phi^I_\Phi (\psi)\) are

\[B^i = \xi_B^i + \kappa (\bar{\psi}^i \xi_\chi - \epsilon^{ij} \bar{\psi}^j \xi_\nu) - \frac{1}{2} \kappa^2 \{ \bar{\psi}^j \psi^j F^i (\psi) - 2 \bar{\psi}^i \bar{\psi}^j F^j (\psi) + 2i \bar{\psi}^i \partial B^j (\psi) \psi^j \} \]

\[-i \kappa^3 \bar{\psi}^j \psi^j \{ \bar{\psi}^i \partial \chi (\psi) - \epsilon^{ik} \bar{\psi}^k \partial \nu (\psi) \} + \frac{3}{8} \kappa^4 \bar{\psi}^j \psi^j \bar{\psi}^k \psi^k \partial^2 B^i (\psi), \]

\[\chi = \xi_\chi + \kappa \{ \psi^i F^i (\psi) - i \partial B^i (\psi) \psi^i \} \]
\[
\begin{align*}
-\frac{i}{2} \kappa^2 & \left[\partial \chi(\psi) \bar{\psi}^i \psi^i - \epsilon^{ij} \{ \psi^i \bar{\psi}^j \partial \nu(\psi) - \gamma^a \psi^i \bar{\psi}^j \partial_a \nu(\psi) \} \right] \\
& + \frac{1}{2} \kappa^3 \psi^i \bar{\psi}^j \psi^j \partial^2 B^i(\psi) + \frac{i}{2} \kappa^3 \bar{\partial} F^i(\psi) \psi^i \bar{\psi}^j \psi^j + \frac{1}{8} \kappa^4 \partial^2 \chi(\psi) \bar{\psi}^i \psi^i \bar{\psi}^j \psi^j,
\end{align*}
\]

\[\nu = \xi_\nu - \kappa \epsilon^{ij} \{ \psi^i F^j(\psi) - i \bar{\partial} B^i(\psi) \psi^j \} \]

\[
\begin{align*}
-\frac{i}{2} \kappa^2 & \left[\partial \nu(\psi) \bar{\psi}^i \psi^i + \epsilon^{ij} \{ \psi^i \bar{\psi}^j \partial \chi(\psi) - \gamma^a \psi^i \bar{\psi}^j \partial_a \chi(\psi) \} \right] \\
& + \frac{1}{2} \kappa^3 \epsilon^{ij} \psi^i \bar{\psi}^k \psi^k \partial^2 B^j(\psi) + \frac{i}{2} \kappa^3 \bar{\partial} F^i(\psi) \psi^j \bar{\psi}^k \psi^k + \frac{1}{8} \kappa^4 \partial^2 \nu(\psi) \bar{\psi}^i \psi^i \bar{\psi}^j \psi^j,
\end{align*}
\]

\[F^i = \frac{\xi_i}{\kappa} - i \kappa \{ \bar{\psi}^i \bar{\partial} \chi(\psi) + \epsilon^{ij} \bar{\psi}^j \bar{\partial} \nu(\psi) \} \]

\[
\begin{align*}
-\frac{1}{2} \kappa^2 & \bar{\psi}^j \psi^j \partial^2 B^i(\psi) + \kappa^2 \bar{\psi}^i \psi^j \partial^2 B^j(\psi) + i \kappa^2 \bar{\psi}^i \bar{\partial} F^j(\psi) \psi^j \\
& + \frac{1}{2} \kappa^3 \bar{\psi}^j \psi^j \{ \bar{\psi}^i \partial^2 \chi(\psi) + \epsilon^{ik} \bar{\psi}^k \partial^2 \nu(\psi) \} - \frac{1}{8} \kappa^4 \bar{\psi}^j \psi^j \bar{\psi}^k \psi^k \partial^2 F^i(\psi).
\end{align*}
\]
Simple SUSY invariant constraints of the component fields in \(\tilde{V} \) and \(\tilde{\Phi} \),

\[
\tilde{C} = \tilde{\Lambda}^i = \tilde{M}^{ij} = \tilde{\phi} = \tilde{v}^a = \tilde{\lambda}^i = 0, \quad \tilde{D} = \frac{\xi}{\kappa}, \quad \tilde{B}^i = \tilde{\chi} = \tilde{\nu} = 0, \quad \tilde{F}^i = \frac{\xi^i}{\kappa},
\]

(41)

give abovementioned simple SUSY invariant relations.
Actions in the $d = 2$, $N = 2$ NL/L SUSY relation

By changing the integration variables $(x^a, \theta^i) \rightarrow (x'^a, \theta'^i)$, we can confirm systematically that LSUSY actions reduce to NLSUSY representation.

(a) The kinetic (free) action with the Fayet-Iliopoulos (FI) D term for the $N = 2$ vector supermultiplet \mathcal{V} reduces to $S_{N=2\text{NLSUSY}}$;

$$S_{V_{\text{free}}} = \int d^2x \left\{ \int d^2\theta^i \frac{1}{32} (\overline{D^i W^j k} D^i W^j k + \overline{D^i W_5^j k} D^i W_5^j k) + \int d^4\theta^i \frac{\xi}{2\kappa} \mathcal{V} \right\}_{\theta^i=0}$$

$$= \xi^2 S_{N=2\text{NLSUSY}}, \quad (42)$$

where

$$W^{ij} = \overline{D^i D^j} \mathcal{V}, \quad W_5^{ij} = \overline{D^i \gamma_5} D^j \mathcal{V}. \quad (43)$$

(Note) The FI D term gives the correct sign of the NLSUSY action.
(b) Yukawa interaction terms for \mathcal{V} vanish, i.e.

$$S_{\mathcal{V}f} = \frac{1}{8} \int d^2x \; f \left[\int d^2\theta \; \mathcal{W}^{jk}(\mathcal{W}^{jl}\mathcal{W}^{kl} + \mathcal{W}^{jl}_{5}\mathcal{W}^{kl}_{5})
ight. \\
+ \left. \int d\bar{\theta}^i d\theta^j \; 2\{\mathcal{W}^{ij}_{\bar{\theta}}(\mathcal{W}^{kl}_{\bar{\theta}}\mathcal{W}^{kl} + \mathcal{W}^{kl}_{5}\mathcal{W}^{kl}_{5}) + \mathcal{W}^{ik}_{\theta}(\mathcal{W}^{jl}\mathcal{W}^{kl} + \mathcal{W}^{jl}_{5}\mathcal{W}^{kl}_{5}) \} \right]_{\theta^i=0}$$

$$= 0,$$

by means of cancellations among four NG-fermion self-interaction terms.
(c) The most general gauge invariant action for \mathcal{V} coupled with Φ^i reduces to $S_{N=2\text{NLSUSY}}$;

\[
S_{\text{gauge}} = -\frac{1}{16} \int d^2x \int d^4\theta^i e^{-4e\mathcal{V}(\Phi^i)^2} \\
= - (\xi^i)^2 S_{N=2\text{NLSUSY}}. \tag{45}
\]

• Here $U(1)$ gauge interaction terms with the gauge coupling constant e produce four NG-fermion self-interaction terms as

\[
S_e(\text{for the minimal off shell multiplet}) = \int d^2x \left\{ \frac{1}{4} e\kappa (\xi^i)^2 \overline{\psi}^j \psi^j \overline{\psi}^k \psi^k \right\}, \tag{46}
\]

which are absorbed in the SUSY invariant relation of the auxiliary field $F^i = F^i(\psi)$ by adding four NG-fermion self-interaction terms as (26):

\[
\tilde{F}^i(\psi) = F^i(\psi) - \frac{1}{4} e\kappa^2 (\xi^i)^2 \overline{\psi}^j \psi^j \overline{\psi}^k \psi^k |w_{VA}|. \tag{47}
\]
Therefore, under the SUSY invariant relations, which are obtained systematically, the $N = 2$ NLSUSY action $S_{N=2\text{NLSUSY}}$ is related to $N = 2$ SUSY QED action by

$$f(\xi, \xi^i)S_{N=2\text{NLSUSY}} = S_{N=2\text{SQED}} \equiv S_{\text{free}} + S_{\nu f} + S_{\text{gauge}} \quad (48)$$

when $f(\xi, \xi^i) = \xi^2 - (\xi^i)^2 = 1$.

\implies This NL/L SUSY relation connects the cosmology and the low energy particle physics in NLSUSY GR (in Sec. 4).
The magnitude of the bare gauge coupling constant is predicted by taking the more general SUSY invariant constraints, i.e. vevs of auxiliary fields:

\[\tilde{C} = \xi_c, \tilde{\Lambda}^i = \tilde{M}^{ij} = \tilde{\phi} = \tilde{\bar{v}}^a = \tilde{\bar{\lambda}}^i = 0, \tilde{\bar{D}} = \frac{\xi}{\kappa}, \tilde{\bar{B}}^i = \tilde{\bar{\chi}} = \tilde{\bar{\nu}} = 0, \tilde{\bar{F}}^i = \frac{\xi^i}{\kappa}. \]

(49)

The bare gauge coupling constant (i.e. the fine structure constant \(\alpha = \frac{e^2}{4\pi} \)) is expressed (determined) in terms of constant values of auxiliary-fields:

\[f(\xi, \xi^i, \xi_c) = \xi^2 - (\xi^i)^2 e^{-4e\xi_c} = 1, \text{ i.e., } e = \frac{\ln(\frac{\xi^i}{\xi^2 - 1})}{4\xi_c}, \]

(50)

where \(e \) is the bare gauge coupling constant.

This mechanism is natural and very favourable for SGM scenario as a theory for everything.

Broken \(N \)-LSUSY(SUSYQCD) theory emerges as composites states in the true vacuum of \(N \)-NLSUSY.
The variation of SGM action $L_{N=2SGM}(e, \psi)$ with respect to $e^{a\mu}$ yields the equation of motion for $e^{a\mu}$ in Riemann space-time:

$$R_{\mu\nu}(e) - \frac{1}{2}g_{\mu\nu}R(e) = -\frac{8\pi G}{c^4} \left\{ \tilde{T}_{\mu\nu}(e, \psi) - g_{\mu\nu} \frac{c^4 \Lambda}{16\pi G} \right\},$$

(51)

where $\tilde{T}_{\mu\nu}(e, \psi)$ abbreviates the stress-energy-momentum of superon (NG fermion) including the gravitational interaction.

Note that $-\frac{c^4 \Lambda}{16\pi G}$ can be interpreted as the negative energy density of empty space-time, i.e. the dark energy density ρ_D.

(The negative sign is unique.)
While, we have seen in the preceding section that

\[N = 2 \text{ SGM} \text{ is essentially } N=2 \text{ NLSUSY action} \text{ in asymptotic Riemann-flat (tangent) space-time.} \]

- The low energy theorem for NLSUSY gives the superon(NG fermion)-vacuum coupling

\[
< \psi^j_\alpha(q) | J^{k\mu}_\beta | 0 > = i \sqrt{\frac{c^4 \Lambda}{16\pi G}} (\gamma^\mu)_{\alpha\beta} \delta^{jk}, \tag{52}
\]

where \(J^{k\mu} = i \sqrt{\frac{c^4 \Lambda}{16\pi G}} \gamma^\mu \psi^k + \cdots \) is the conserved supercurrent.

\[\sqrt{\frac{c^4 \Lambda}{16\pi G}} \] is the coupling constant \((g_{sv}) \) of superon with the vacuum.
For extracting the low energy particle physics contents of $N = 2$ SGM (NLSUSY GR) we consider in Riemann-flat asymptotic space-time, where NL/L SUSY relation in flat space-time gives:

$$L_{N=2SGM} \rightarrow L_{N=2NLSUSY} + \text{[surface terms]} = L_{N=2SUSYQED}. \quad (53)$$

- Now we study the vacuum structure of $N = 2$ LSUSY QED action in stead of $N = 2$ SGM.

The vacuum is determined by the minimum of the potential $V(A, \phi, B^i, D)$ of $L_{N=2LSUSYQED}$,

$$V(A, \phi, B^i, D) = -\frac{1}{2}D^2 + \left\{ \frac{\xi}{\kappa} - f(A^2 - \phi^2) + \frac{1}{2}e(B^i)^2 \right\} D. \quad (54)$$
Substituting the solution of the equation of motion for the auxiliary field D we obtain

$$V(A, \phi, B^i) = \frac{1}{2} f^2 \left\{ A^2 - \phi^2 - \frac{e}{2f} (B^i)^2 - \frac{\xi}{f\kappa} \right\}^2 + \frac{1}{2} e^2 (A^2 + \phi^2)(B^i)^2 \geq 0. \quad (55)$$

The configurations of the fields corresponding to the vacua in (A, ϕ, B^i)-space are classified according to the signatures of the parameters e, f, ξ, κ as follows:

(I) For $ef > 0$, $\frac{\xi}{f\kappa} > 0$ case,

$$A^2 - \phi^2 - (\tilde{B}^i)^2 = k^2. \quad \left(\tilde{B}^i = \sqrt{\frac{e}{2f}} B^i, \quad k^2 = \frac{\xi}{f\kappa} \right) \quad (56)$$

(II) For $ef < 0$, $\frac{\xi}{f\kappa} > 0$ case,

$$A^2 - \phi^2 + (\tilde{B}^i)^2 = k^2. \quad \left(\tilde{B}^i = \sqrt{-\frac{e}{2f}} B^i, \quad k^2 = \frac{\xi}{f\kappa} \right) \quad (57)$$
(III) For $ef > 0$, $\frac{\xi}{f\kappa} < 0$ case,

$$-A^2 + \phi^2 + (\tilde{B}^i)^2 = k^2. \quad (\tilde{B}^i = \sqrt{\frac{e}{2f}} B^i, \quad k^2 = -\frac{\xi}{f\kappa})$$ (58)

(IV) For $ef < 0$, $\frac{\xi}{f\kappa} < 0$ case,

$$-A^2 + \phi^2 - (\tilde{B}^i)^2 = k^2. \quad (\tilde{B}^i = \sqrt{-\frac{e}{2f}} B^i, \quad k^2 = -\frac{\xi}{f\kappa})$$ (59)
We find that the vacua (I) and (IV) are unphysical, for they produce pathological wrong kinetic terms for the fields expanded around the vacuum.

As for the vacua (II) and (III) we perform similar arguments as shown below and find that two different physical vacua appear.

The physical particle spectrum is obtained by expanding the fields \((A, \phi, B^i)\) around the vacuum.
• Expressions for the case (II):

Case (IIa)

\[A = (k + \rho) \sin \theta \cosh \omega, \]
\[\phi = (k + \rho) \sinh \omega, \]
\[\tilde{B}^1 = (k + \rho) \cos \theta \cos \varphi \cosh \omega, \]
\[\tilde{B}^2 = (k + \rho) \cos \theta \sin \varphi \cosh \omega. \]

Case (IIb)

\[A = -(k + \rho) \cos \theta \cos \varphi \cosh \omega, \]
\[\phi = (k + \rho) \sinh \omega, \]
\[\tilde{B}^1 = (k + \rho) \sin \theta \cosh \omega, \]
\[\tilde{B}^2 = (k + \rho) \cos \theta \sin \varphi \cosh \omega. \]

• For the case (III) the arguments hold by exchanging \(A \) and \(\phi \), called (IIIa) and (IIIb). Substituting these expressions into \(V(A, \phi, B^i) \) and expanding around the vacuum configuration we obtain the physical particle contents.
For the cases (IIa) and (IIIa) we obtain

\[
L_{N=2\text{SUSY QED}} = \frac{1}{2} \{ (\partial_a \rho)^2 - 2(-ef)k^2 \rho^2 \}
\]

\[
+ \frac{1}{2} \{ (\partial_a \theta)^2 + (\partial_a \omega)^2 - 2(-ef)k^2 (\theta^2 + \omega^2) \}
\]

\[
+ \frac{1}{2} (\partial_a \varphi)^2
\]

\[
- \frac{1}{4} (F_{ab})^2 + (-ef)k^2 v_a^2
\]

\[
+ \frac{i}{2} \bar{\lambda}^i \partial \lambda^i + \frac{i}{2} \bar{\phi} \partial \chi + \frac{i}{2} \bar{\nu} \partial \nu + \sqrt{-2ef}(\bar{\lambda}^1 \chi - \bar{\lambda}^2 \nu) + \cdots,
\]

(60)
and the following mass spectra

\[m^2_\rho = m^2_\theta = m^2_\omega = m^2_{v_\alpha} = 2(-ef)k^2 = -\frac{2\xi e}{\kappa}, \]

\[m_{\chi_i} = m_{\chi} = m_\nu = m_\varphi = 0. \]

(61)

- The vacuum breaks both SUSY and the local $U(1)$ spontaneously.

(φ is the NG boson for the spontaneous breaking of $U(1)$ symmetry, i.e. the $U(1)$ phase of B, and totally gauged away by the Higgs-Kibble mechanism with $\Omega(x) = \sqrt{e\kappa/2\varphi(x)}$ for the $U(1)$ gauge (28).)

- All bosons have the same mass, and remarkably all fermions remain massless.

- The off-diagonal mass terms $\sqrt{-2ef}(\bar{\lambda}\chi - \bar{\lambda}\nu) = \sqrt{-2ef}(\bar{\chi}_D\lambda + \bar{\chi}\lambda_D)$ would induce mixings of fermions. \(\Rightarrow\) pathological?
• For (IIb) and (IIIb) we obtain

\[
L_{N=2\text{SUSYQED}} = \frac{1}{2} \left\{ (\partial_a\varrho)^2 - 4f^2k^2\varrho^2 \right\} \\
+ \frac{1}{2} \left\{ (\partial_a\theta)^2 + (\partial_a\varphi)^2 - e^2k^2(\theta^2 + \varphi^2) \right\} \\
+ \frac{1}{2} (\partial_a\omega)^2 \\
- \frac{1}{4} (F_{ab})^2 \\
+ \frac{1}{2} (i\bar{\chi}\partial\chi - 2f k\bar{\chi}\chi) \\
+ \frac{1}{2} \left\{ i(\bar{\chi}\partial\chi + \bar{\nu}\partial\nu) - ek(\bar{\chi}\chi + \bar{\nu}\nu) \right\} + \cdots.
\]

(62)
and the following mass spectra:

\[
\begin{align*}
 m^2_\rho &= m^2_{\chi i} = 4 f^2 k^2 = \frac{4 \xi f}{\kappa}, \\
 m^2_\theta &= m^2_\varphi = m^2_\chi = m^2_\nu = e^2 k^2 = \frac{\xi e^2}{\kappa f}, \\
 m_{v_a} &= m_\omega = 0,
\end{align*}
\]

which can produce mass hierarchy by the factor \(\frac{e}{f} \).

- SUSY is broken spontaneously alone.

(The massless scalar \(\omega \) is a NG boson for the degeneracy of the vacuum in \((A, \tilde{B}_2)\)-space, which is gauged away provided the gauge symmetry between the vector and the scalar multiplet is introduced.)
• We have shown explicitly that $N=2$ LSUSY QED, i.e. the matter sector (in asymptotic flat-space) of $N = 2$ SGM, possesses a true vacuum type (b) with $V = 0$.

• The resulting model describes:

one massive charged Dirac fermion ($\psi_D^\mp \sim \chi + i\nu$),
one massive neutral Dirac fermion ($\lambda_D^0 \sim \lambda^1 - i\lambda^2$),
one massless vector (a photon) (v_a),
one charged scalar ($\phi^c \sim \theta + i\varphi$), one neutral complex scalar ($\phi^0 \sim \rho(+i\omega)$),

which are the composites of superons.

• Remarkably, the whole states resemble the lepton-Higgs sector of SM, though with $SU(2)_{\text{global}} \otimes U(1)$.
• As for cosmological meanings of $N = 2$ LSUSY QED in the SGM scenario, the results of the unique vacuum type (b) may simply explain the observed mysterious (numerical) relations and give a new insight into the origin of mass:

$((\text{dark} \, \text{energy density of the universe})_{\text{obs}} \sim (m_\nu)_{\text{obs}}^4 \sim (10^{-12}\text{GeV})^4 \sim g_{sv}^2$,

provided λ_{D^0} is identified with neutrino. [in $D = 4$ as well]

• While the vacua of (IIa) and (IIIa) inducing the fermion mixing, unphysical so far, may give new features characteristic of $N = 2$.

They may be generic for $N > 2$ and deserve further investigations.
4. Summary

NLSUSY GR(SGM) scenario:

Ultimate entity,
New unstable (empty) space-time
\[[x^a, \psi^N; x^\mu : L_{NLSUSGR}(w)] \leftarrow \text{NLSUSY GR with } \Lambda \text{ for empty space-time} \]

Big Decay of spacetime (due to false vacuum \(V = \Lambda > 0 \)), Mach principle
\[\Rightarrow \]

Riemann space-time and massless fermionic matter
\[[x^a; x^\mu : L_{EH}(e) - \Lambda + T(\psi.e)] \leftarrow \text{Einstein GR with } V = \Lambda > 0 \text{ and } N \text{ superon (SGM),} \]
Phase transition to true vacuum \(V = \Lambda = 0 \) realized by (massless) composite eigenstates of LSUSY staffs: **Superfluidity of space-time and matter**, Ignittion of **Big Bang**, Inflation
\[\Rightarrow \]

In asymptotic flat space-time, broken \(N \)-LSUSY theory emerges from the \(N \)-NLSUSY cosmological term of SGM via NL/L SUSY relation. \[\iff \] GL and BCS
The true vacuum has promising rich structures, new physics! **Detour of no-go theorem!**
Predictions and Conjectures: [Qualitative, accessible ones]

©(Group theory SO(N) sP with $N = 10 = 5 + 5^*$ of superon-quintet(SQ) hypothesis):

• Lepton-type spin 3/2 doublet,
• Doubly charged spin 1/2 particles E^{2+},
• Proton is stable due to compositeness,

New wine(superons-quintet) in Old Bottle (5 of SU(5) GUT)!

©(Field theory via NL/L SUSY relation):

• SGM scenario predicts 4 dimensional spacetime.
• Neutral scalar particle $\rho \sim O(m_\nu)$ \iff dark matter.
• Superfluidity of space-time $\iff \kappa^{-2}$: chemical potential.

The cosmological constant is the constant for everything!
Many Open Questions! e.g.,

- d=4 case (and the non-Abelian case) is urgent,
- Realistic large N case (especially N=5 and N=10), ⋅⋅⋅, partial \mathcal{N} SUSY breaking?
- Direct linearization of SGM action in curved space-time.
- What is the equivalent LSUSY theory?
- Complete Detour of No-Go Th.! (Massive high-spins in linearized theory)
- Superfield for systematic linearization for $N \geq 2$ interacting cases.
- SGM suggests $N \geq 2$ low energy MSSM, SUSY GUT.
- Physical Consequences of spin 3/2 NLSUSY GR.
- Equivalence principle and NLSUSYGR.
I. Introduction & Motivations

SUSY is the most important notion for the unification of force and matter beyond the SM.

Non SUSY GUTs are excluded.

- **SUSY, SM, SU(5), SO(10), ...**
- SUSY GUT
 - unification $g_1, g_2, ... \rightarrow g \sim 10^{12}$ GeV
 - Many parameters
 - Many Particles > 130
 - Proton decay: $p \rightarrow e^+ \pi^0, K^+ \bar{\nu}$
 - LEP $N_\nu = 3$

SUGRA

- Dark Energy, Dark Matter $\rightarrow + A$
- $\Psi_{125} (M_\nu)^4 \rightarrow \frac{\rho_{TH}}{\rho_{crit}} \rightarrow 10^{-120}$
- 3 generations for b's and l's (ν's)

SO(N) SUGRA

Max. $N = 8$

Too small for realistic GUTs

$$8 = 4 + 4^* = (2 + 1) + (1 + 1)^*$$

$N = 10$, Minimal!

SO(10) \supset SU(4) x U(1)

Subgroup \supset No local field theory with $\chi(m = 0) > 2$

No local field theory with $\chi(m = 0) > 2$!

Gauged S-matrix, covariance

From the simplicity and the beauty of nature it is interesting to accommodate all observed particles in a single, irreducible rep. of SO(N) SPA (Group).

Structure of spacetime and matter

A fundamental action possesses high spin degrees of freedom not as elementary fields but as composites eigenstates of a certain symmetry. \rightarrow pure YM, BCS for high T_c.
Table 2. (SU(3), SU(2); electric charges) contents of the states in Table 1

<table>
<thead>
<tr>
<th>Spin $J (m=0)$</th>
<th>3</th>
<th>5/2</th>
<th>2</th>
<th>3/2</th>
<th>1</th>
<th>1/2</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiplicities</td>
<td></td>
<td></td>
<td>1</td>
<td>10</td>
<td></td>
<td>45</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td>+</td>
</tr>
</tbody>
</table>

1 = (1, 1; 0)

10 = (1, 2; 1, 0) + (1, 2; 0, -1) + (3, 1; -1/3, -1/3, -1/3)
+ (3*, 1; 1/3, 1/3, 1/3)

45 = 2(1, 1; 0) + (1, 1; 1) + (1, 1; -1) + (1, 3; 1, 0, -1) + (3, 1; 2/3)
+ (3*, 1; 1/3) + (8, 1; 0) + (3, 2; 1/3, -1/3) + (3*, 2; 1/3, -2/3)
+ (3*, 2; 1/3, 4/3) + (3, 2; -1/3, -4/3)

120 = (1, 1; 1) + (1, 1; -1) + 2(3, 1; -1/3) + 2(3*, 1; 1/3) + (3, 1; 2/3)
+ (3*, 1; -2/3) + (3*, 1; 4/3) + (3, 1; -4/3) + (6, 1; 1/3)
+ (6*, 1; -1/3) + 2(1, 2; 1, 0) + 2(1, 2; 0, -1) + (3, 2; 2/3, -1/3)
+ (3*, 2; 1/3, -2/3) + (3, 2; 2/3, 5/3) + (3*, 2; -2/3, -5/3)
+ (3*, 3; 4/3, 1/3, -2/3) + (3, 3; 2/3, -1/3, -4/3)
+ (8, 2; 1, 0) + (8, 2; 0, -1)

210 = 3(1, 1; 0) + (1, 1; -1) + (1, 1; 1) + (3, 1; -1/3) + (3*, 1; 1/3)
+ 2(3, 1; -2/3) + 2(3*, 1; -2/3) + (3, 1; 5/3) + (3*, 1; -5/3)
+ 2(8, 1; 0) + (8, 1; 1) + (8, 1; -1) + (1, 2; 1, 0) + (1, 2; 0, -1)
+(1, 2; 1, 0) + (1, 2; -1, -2) + (1, 3; 1, 0, -1) + 2(3, 2; 2/3, -1/3)
+ 2(3*, 2; 1/3, 2/3) + (3*, 2; 1/3) + (3, 2; -1/3, -4/3)
+ (3, 3; 3/3, 2/3, -1/3) + (3*, 3; 1/3, -2/3, -5/3)
+ (6*, 2; -1/3, -1/3) + (6, 2; 1/3, -2/3) + (6, 2; 1/3, 4/3)
+ (6*, 2; -2/3, -4/3) + (8, 3; 1, 0, -1)

252 = (1, 1; 0) + (1, 1; 1) + (1, 1; -1) + (1, 1; 2) + (1, 1; -2)
+ 3(3*, 1; 1/3) + 2(3*, 1; -1/3) + (3, 1; 2/3) + (3*, 1; -2/3)
+ (3*, 1; 4/3) + (3, 1; -4/3) + (6, 1; 1/3) + (6*, 1; -1/3)
+ (6*, 1; 2/3) + (6, 1; -2/3) + (6*, 1; 4/3) + (6*, 1; -4/3)
+ 2(1, 2; 1, 0) + 2(1, 2; 0, -1) + (1, 3; 0, 1, 2) + (1, 3; 0, -1, -2)
+ 2(3, 2; 2/3, -1/3) + 2(3*, 2; 1/3, -2/3) + 2(3, 2; 2/3, 5/3)
+ 2(3*, 2; -2/3, -5/3) + (3, 3; 2/3, 1/3, -4/3)
+ (3*, 3; 4/3, -1/3, -2/3) + (6, 3; 4/3, 1/3, -2/3)
+ (6*, 3; 2/3, -1/3, -4/3) + 2(8, 2; 0, -1) + (8, 2; 0, 1)
Table 3. All surviving spin $J = \frac{1}{2}$ particle and their $SU(3) \otimes S^T(2) \otimes U(1)$ contents in $SO(10)$ supergravity. New particles are tentatively presented as Dirac particles.

<table>
<thead>
<tr>
<th>$SU(3)$</th>
<th>Q_ϵ</th>
<th>$(SU(2))$ and Particles</th>
<th>Y_ϵ</th>
<th>Y_μ</th>
<th>Y_τ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>(ν_e) e_L</td>
<td>(ν_τ) τ_L</td>
<td>(ν_τ) τ_R</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1</td>
<td>(ν_μ) μ_L</td>
<td>(ν_τ) τ_R</td>
<td>(ν_τ) τ_R</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-2</td>
<td>(ν_e) e_L</td>
<td>(ν_μ) μ_R</td>
<td>(ν_τ) τ_R</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(ν_τ) τ_L</td>
<td>(ν_μ) μ_R</td>
<td>(ν_τ) τ_R</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5/3</td>
<td>(u) u_L</td>
<td>(t) t_R</td>
<td>(a) a_R</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2/3</td>
<td>(c) c_L</td>
<td>(d) d_R</td>
<td>(g) g_R</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1/3</td>
<td>(s) s_L</td>
<td>(f) f_R</td>
<td>(m) m_R</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-4/3</td>
<td>(b) b_L</td>
<td>(c) c_R</td>
<td>(r) r_R</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4/3</td>
<td>(P) P</td>
<td>(x) x_L</td>
<td>(f) f_R</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1/3</td>
<td>(Q) Q</td>
<td>(v) v_R</td>
<td>(g) g_R</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-2/3</td>
<td>(R) R</td>
<td>(y) y_R</td>
<td>(h) h_R</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>(N_1) N_1</td>
<td>(z) z_R</td>
<td>(i) i_R</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-1</td>
<td>(N_2) N_2</td>
<td>(f) f_R</td>
<td>(n) n_R</td>
<td></td>
</tr>
</tbody>
</table>

$SO(10)$ Split:

\[
\begin{align*}
10 &= 5 + 5^* \\
5^* &= SU(5) \\
5 &= \begin{pmatrix}
+1 & 0 \\
0 & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2}
\end{pmatrix}
\]

superon quintet