
CMB Fluctuations and String Compactification Scales

岡山光量子科学研究所 羽原由修

E-mail: habara@yukawa.kyoto-u.ac.jp

本講演は二宮正夫氏 (OIQP)、川合光氏 (京大理)、関野恭弘氏 (KEK) との共同研究 [arXiv:1103.0299] に基づくものである。

宇宙背景輻射 (CMB) の温度ゆらぎは、超高エネルギー状態にある宇宙初期に生成されたもの であることから、超弦理論などの fundamental な理論を検証する上で非常に有効な研究対象とな る。我々は、de Sitter 膨張する背景時空上にある N 種の scalar 場が古典値なしの純粋な量子論的 効果を持つことでエネルギー密度のゆらぎを生じ、そのゆらぎが Einstein 方程式を通じて metric のゆらぎ (所謂 scalar potential) を作って、Sachs-Wolfe 効果から温度ゆらぎが生成されたとす る、新たなゆらぎ生成のメカニズムを提唱した。また同様のメカニズムによって tensor ゆらぎ (CMB の B-mode polarization) も生成されるとした。すると、温度ゆらぎの観測値 $\frac{\delta T}{T} \simeq 10^{-5}$ を 適用して $N \simeq 10^{15}$ であり、tensor ゆらぎが現在の観測限界以下の大きさ $(scalar/tensor\ ratio\)$ が $r_{t/s} \lesssim 0.22$) であるから Hubble constant H が Planck scale m_{vl} に対して上限 $H \lesssim 10^{-4} m_{vl}$ を 持つことが分かった。さてここで、 $N \simeq 10^{15}$ もの非常に多種類の粒子は如何なる理論を背景とし ているのかが問題となるが、我々は本研究において超弦理論を考え、その10次元時空のうち6次 元 compact 時空が string scale m_s と compact 化半径 L を用いて $L^D imes (m_s^{-1})^{6-D}$ なる体積を 持っていると仮定し、Kaluza-Klein mode と超弦の励起状態がゆらぎを生み出す粒子であるとし た。inflation 終了時の宇宙の「大きさ」を $10^{67}H^{-1}$ とすると、L と string coupling g_s は m_s の 関数として記述される (下図)。ここで g_s は 4 次元 Newton constant ϵ compact 化により 10 次元 から導く式 $(Lm_s)^D=8\pi^6g_s^2rac{m_{pl}^2}{m^2}$ で決めている。その結果、 $g_s\lesssim O(1)$ であろうことから、 ${
m string}$

scale m_s 、large extra dimension L の大きさと数 D に制限が課されることが明らかになった。さらに我々は理論的予言として non-Gaussianity parameter f_{NL} を評価し $f_{NL} \lesssim 10^{-4}$ を得た。