Calculation in Gauge Theory	Calculation in String Theory		
	0000	000	
00	0000		
	00000000		

On correlation function of Wilson loop and local operator with large R-charge and its gravity dual

Takayuki Enari In Collaboration with Akitsugu Miwa

College of Science and Technology, Nihon University

July 23, 2012 @YITP workshop

Takayuki Enari , In Collaboration with Akitsugu Miwa

College of Science and Technology, Nihon University

Introduction			
	0 00	0000 0000 00000000	

Introduction

AdS/CFT correspondence

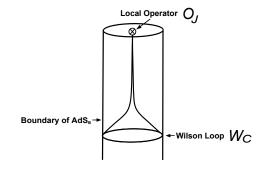
 $\mathcal{N} = 4 \text{ SYM} \Leftrightarrow \text{type IIB superstring}$

Wilson loop \Leftrightarrow area of world-sheet

 $\begin{array}{l} \mbox{Wilson loop + heavy local operator} \\ \Leftrightarrow \mbox{ area of deformed world-sheet} \\ \Rightarrow \mbox{ Zarembo's solution (1/2 BPS Wilson Loop)} \end{array}$

today's talk ... 1/4 BPS Wilson Loop

Introduction	Calculation in Gauge Theory	Calculation in String Theory	
	0 00	0000 0000	
		00000000	



 $\langle W_C O_J \rangle \sim \exp[-(S_{\text{bulk}} + \text{boundary term})]$

Takayuki Enari , In Collaboration with Akitsugu Miwa

College of Science and Technology, Nihon University

Calculation in Gauge Theory	Calculation in String Theory	
0 00	0000 0000 00000000	

Plan of Talk

1 Introduction

- 2 Calculation in Gauge Theory
 - Operators
 - Correlation Function
- 3 Calculation in String Theory
 - Action and Solution of EOM
 - Supersymmetry
 - Semi-Classical Evaluation of Path Integral
- 4 Another Saddle Point
 - Another Saddle Point
- 5 Summary and Future Works

	Calculation in Gauge Theory	Calculation in String Theory	
	00	0000 0000 00000000	
Operators			

Operators

1/4 BPS Wilson loop operator

$$W_C = rac{1}{N} \operatorname{tr} \mathcal{P} \exp \oint_C (i A_\mu \dot{x}^\mu + \Phi_i \Theta_i |\dot{x}|) \, d\sigma$$

 $x(\sigma) = (r \cos \sigma, r \sin \sigma, 0, 0) \quad r \dots \text{ radius of the loop}$ $\Theta(\sigma) = (\sin \theta_0 \cos \sigma, \sin \theta_0 \sin \sigma, \cos \theta_0, 0, 0, 0)$

chiral primary operator with R-charge J

$$O_J = \operatorname{tr}(\Phi_3 + i\Phi_4)^J \longrightarrow 1/2 \text{ BPS}$$

 $W_C O_J \rightarrow 1/8 \text{ SUSY}$

- K. Zarembo, Nucl. Phys. B643 (2002) 157-171
- N. Drukker, JHEP 09 (2006) 004
- G. W. Semenoff and D. Young, Phys. Lett. B643 (2006) 195-204

Takayuki Enari , In Collaboration with Akitsugu Miwa

College of Science and Technology, Nihon University

Calculation in Gauge Theory	Calculation in String Theory	
○ ●	0000 0000 00000000	

Correlation Function

Correlation Function

correlation function sum of ladder diagrams

$$rac{\langle W_C O_J
angle}{\langle W_C
angle} \propto rac{r^J}{(\ell^2 + r^2)^J} \sqrt{\lambda' J} rac{I_J(\sqrt{\lambda'})}{I_1(\sqrt{\lambda'})}$$

$$\sqrt{\lambda'} \equiv \sqrt{\lambda} \cos \theta_0 \quad \lambda \dots$$
 't Hooft coupling
 $I_J(\sqrt{\lambda'}) \dots J$ -th modified Bessel function
 $r \dots$ radius of the loop
 $\ell \dots$ distance $W_C \leftrightarrow O_J$

G. W. Semenoff and K. Zarembo, Nucl. Phys. B616 (2001) 34-46 G. W. Semenoff and D. Young, Phys. Lett. B643 (2006) 195-204

Takayuki Enari , In Collaboration with Akitsugu Miwa

On correlation function of Wilson loop and local operator with large R-charge and its gravity dual

saddle point analysis

$$\sqrt{\lambda'} \to \infty, \ J \to \infty, \ j' \equiv J/\sqrt{\lambda'} \ \text{fixed} \ \left(j' \equiv \frac{j}{\cos \theta_0}\right)$$

$$I_{J}(\sqrt{\lambda'}) = \frac{1}{2\pi i} \int_{\infty-\pi i}^{\infty+\pi i} \exp\sqrt{\lambda'} (\cosh x - j'x) dx$$
$$\sim \exp\sqrt{\lambda'} [\sqrt{j'^2 + 1} + j' \ln(\sqrt{j'^2 + 1} - j')]$$

saddle points ... $x = \ln(\sqrt{j'^2 + 1} + j'), -\ln(\sqrt{j'^2 + 1} + j') + \pi i$

Result:
$$\langle W_C O_J \rangle \sim \frac{r^J}{(\ell^2 + r^2)^J} \exp \sqrt{\lambda'} [\sqrt{j'^2 + 1} + j' \ln(\sqrt{j'^2 + 1} - j')]$$

K. Zarembo, Phys. Rev. D66 (2002) 105021

Takayuki Enari , In Collaboration with Akitsugu Miwa

College of Science and Technology, Nihon University

Calculation in Gauge Theory	Calculation in String Theory	
0 00	• 000 0000 00000000	

Action and Solution of EOM

Action and Solution of EOM

string action

$$S = \frac{1}{4\pi\alpha'} \int G_{MN}(\dot{X}^M \dot{X}^N + X'^M X'^N) d\tau_{\mathsf{E}} d\sigma$$

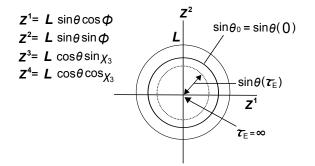
 $\mathsf{AdS}_5\otimes\mathsf{S}^5$ metric

$$ds^{2} = L^{2} \left[\cosh^{2} \rho dt_{\mathsf{E}}^{2} + d\rho^{2} + \sinh^{2} \rho (d\varphi_{1}^{2} + \sin^{2} \varphi_{1} (d\varphi_{2}^{2} + \sin^{2} \varphi_{2} d\varphi_{3}^{2})) + d\theta^{2} + \sin^{2} \theta d\phi^{2} + \cos^{2} \theta (d\chi_{1}^{2} + \sin^{2} \chi_{1} (d\chi_{2}^{2} + \sin^{2} \chi_{2} d\chi_{3}^{2})) \right]$$

Takayuki Enari , In Collaboration with Akitsugu Miwa

	Calculation in Gauge Theory	Calculation in String Theory	
	0 00	0000 0000 00000000	
Action and Solut	ion of EOM		
ans	atz		

$$AdS_5: t_E = t_E(\tau_E), \ \rho = \rho(\tau_E), \ \varphi_1 = \varphi_2 = \frac{\pi}{2}, \ \varphi_3 = \sigma$$
$$S^5: \ \theta = \theta(\tau_E), \ \phi = \sigma, \ \chi_1 = \chi_2 = \frac{\pi}{2}, \ \chi_3 = \chi_3(\tau_E)$$



Takayuki Enari , In Collaboration with Akitsugu Miwa

College of Science and Technology, Nihon University

Calculation in Gauge Theory	Calculation in String Theory	Summary and I
0 00	0000 0000 00000000	

$$S = \frac{\sqrt{\lambda}}{2} \int (\cosh^2 \rho \dot{t_E}^2 + \dot{\rho}^2 + \sinh^2 \rho + \dot{\theta}^2 + \sin^2 \theta + \cos^2 \theta \dot{\chi}_3^2) d\tau_E$$

EOM $(j \equiv J/\sqrt{\lambda})$
 $\frac{d}{d\tau_E} (\cosh^2 \rho \dot{t_E}) = 0 \implies \cosh^2 \rho \dot{t_E} = j$
 $\ddot{\rho} - \sinh \rho \cosh \rho (\dot{t_E}^2 - 1) = 0$
 $\ddot{\theta} + \sin \theta \cos \theta (\dot{\chi}_3^2 - 1) = 0$
 $\frac{d}{d\tau_E} (\cos^2 \theta \dot{\chi}_3) = 0 \implies \cos^2 \theta \dot{\chi}_3 = ij$

Virasoro constraint

$$\cosh^2\rho \dot{t_{\mathsf{E}}}^2 + \dot{\rho}^2 + \dot{\theta}^2 + \cos^2\theta \dot{\chi}_3^2 = \sinh^2\rho + \sin^2\theta$$

Takayuki Enari , In Collaboration with Akitsugu Miwa

	Calculation in Gauge Theory O OO	Calculation in String Theory OOO● 00000 000000000	
Action and Soluti	ion of EOM		

solution of EOM

$$t_{\rm E} = j\tau_{\rm E} - \frac{1}{2} \ln \frac{\cosh(\sqrt{j^2 + 1}\tau_{\rm E} + \xi)}{\cosh(\sqrt{j^2 + 1}\tau_{\rm E} - \xi)}$$

$$\sinh \rho = \frac{\sqrt{j^2 + 1}}{\sinh(\sqrt{j^2 + 1}\tau_{\rm E})}$$

$$\sin \theta = \frac{\sqrt{j^2 + 1}}{\cosh(\sqrt{j^2 + 1}(\tau_{\rm E} + \tau_0))}$$

$$= ij\tau_{\rm E} + \frac{i}{2} \ln \frac{\sinh(\sqrt{j^2 + 1}(\tau_{\rm E} + \tau_0) - \xi)}{\sinh(\sqrt{j^2 + 1}(\tau_{\rm E} + \tau_0) + \xi)} + \frac{i}{2} \ln \frac{\sinh(\sqrt{j^2 + 1}\tau_0 + \xi)}{\sinh(\sqrt{j^2 + 1}\tau_0 - \xi)}$$

$$\equiv \ln(\sqrt{j^2 + 1} + j))$$

Takayuki Enari , In Collaboration with Akitsugu Miwa

 χ_{3}

(ξ

College of Science and Technology, Nihon University

Introduction Calo	culation in Gauge Theory	Calculation in String Theory	Another Saddle Point	
000		0000 •000 00000000		

Summary and Future Works

Supersymmetry

Supersymmetry

Killing spinor equation for $AdS_5 \otimes S^5$

$$\left(D_M + \frac{\varepsilon}{2L} \Gamma_\star \hat{\Gamma}_M\right) \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \end{pmatrix} = 0$$

 D_M ... covariant derivative ϵ_1, ϵ_2 ... 32-components Majorana-Weyl spinors $\hat{\Gamma}_M$... 10-dimensional gamma matrices Γ_{\star} ... a product of all gamma matrices in AdS₅ ε ... $\varepsilon = i\sigma_2$: $\varepsilon \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \end{pmatrix} = \begin{pmatrix} \epsilon_2 \\ -\epsilon_1 \end{pmatrix}$

Takayuki Enari , In Collaboration with Akitsugu Miwa

	Calculation in Gauge Theory O OO	Calculation in String Theory ○○○○ ○●○○	
Supersymmetry		00000000	

solution of Killing spinor equation

$$\begin{pmatrix} \epsilon_{1\mathsf{E}} \\ \epsilon_{2\mathsf{E}} \end{pmatrix} = \exp\left(\frac{1}{2}\rho\mathsf{\Gamma}_{\star}\mathsf{\Gamma}_{1}\varepsilon\right)\exp\left(\frac{1}{2}t_{\mathsf{E}}\mathsf{\Gamma}_{\star}\mathsf{\Gamma}_{\mathsf{E}}\varepsilon\right)\exp\left(\frac{1}{2}\varphi_{3}\mathsf{\Gamma}_{14}\right)\exp\left(-\frac{1}{2}\theta\gamma_{1}\gamma_{\star}\varepsilon\right)\times \\ \times \exp\left(\frac{1}{2}\phi\gamma_{12}\right)\exp\left(-\frac{1}{2}\chi_{3}\gamma_{5}\gamma_{\star}\varepsilon\right)\binom{\eta_{1\mathsf{E}}}{\eta_{2\mathsf{E}}}$$

 Γ_{μ} ($\mu = E, 1, 2, 3, 4$) ... gamma matrices in AdS₅ γ_m (m = 1, 2, 3, 4, 5) ... gamma matrices in S⁵ γ_{\star} ... a product of all gamma matrices in S⁵ η_{1E}, η_{2E} ... constant spinors

Takayuki Enari , In Collaboration with Akitsugu Miwa

	Calculation in Gauge Theory	Calculation in String Theory	
	0 00	0000 0000 00000000	
Supersymmetry			

projection

$$\frac{i}{\sqrt{\det g}}\partial_{\tau \mathsf{E}} X^M \partial_{\sigma} X^N \ e^{\mathfrak{a}}_M \hat{\Gamma}_{\mathfrak{a}} \ e^b_N \hat{\Gamma}_b \ \sigma_3 \binom{\epsilon_{1\mathsf{E}}}{\epsilon_{2\mathsf{E}}} = \binom{\epsilon_{1\mathsf{E}}}{\epsilon_{2\mathsf{E}}}$$

 $\begin{array}{l}g \ \dots \ \text{induced metric on world-sheet}\\ e^a_M \ \dots \ \text{vielbein}\\ \sigma_3 \ \dots \ \sigma_3 \colon \ \sigma_3 \begin{pmatrix} \epsilon_{1\mathsf{E}} \\ \epsilon_{2\mathsf{E}} \end{pmatrix} = \begin{pmatrix} \epsilon_{1\mathsf{E}} \\ -\epsilon_{2\mathsf{E}} \end{pmatrix} \end{array}$

Takayuki Enari , In Collaboration with Akitsugu Miwa

	Calculation in Gauge Theory O OO	Calculation in String Theory ○○○○ ○○○○ ○○○○○○○○○	
Supersymmetry			

three projections

$$\begin{aligned} (\Gamma_{\rm E} + i\gamma_5) \begin{pmatrix} \eta_{1\rm E} \\ \eta_{2\rm E} \end{pmatrix} &= 0 \\ (\Gamma_{14} + \gamma_{12}) \begin{pmatrix} \eta_{1\rm E} \\ \eta_{2\rm E} \end{pmatrix} &= 0 \\ (\sin\theta_0\gamma_1\Gamma_4 + \cos\theta_0\Gamma_{14}) \begin{pmatrix} \eta_{1\rm E} \\ -\eta_{2\rm E} \end{pmatrix} &= i \begin{pmatrix} \eta_{1\rm E} \\ \eta_{2\rm E} \end{pmatrix} \end{aligned}$$

Our solution is $1/8\ \text{BPS}.$

Takayuki Enari , In Collaboration with Akitsugu Miwa

College of Science and Technology, Nihon University

ks

00		

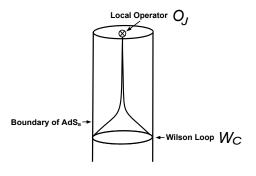
Calculation in String Theory

Another Saddle Point

Summary and Future Works

Semi-Classical Evaluation of Path Integral

Semi-Classical Evaluation of Path Integral



 $\langle W_C O_J \rangle \sim \exp[-(S_{\text{bulk}} + \text{boundary term})]$

Takayuki Enari , In Collaboration with Akitsugu Miwa

College of Science and Technology, Nihon University

		Calculation in String Theory	
	00	0000	
Semi-Classical Ev	aluation of Path Integral		

Coordinates transformations, global \rightarrow Poincaré:

$$\frac{re^{t_{\rm E}}}{\cosh\rho} = Y, \ re^{t_{\rm E}} \tanh\rho = R$$

Using isometry:

$$\begin{split} \tilde{Y} &= \frac{\ell^2 + r^2}{\ell^2 + R(\tau_{\rm E})^2 + Y(\tau_{\rm E})^2} Y(\tau_{\rm E}) \\ (\tilde{X}^1, \tilde{X}^2) &= \frac{\ell^2 + r^2}{\ell^2 + R(\tau_{\rm E})^2 + Y(\tau_{\rm E})^2} R(\tau_{\rm E}) (\cos \sigma, \sin \sigma) \\ \tilde{X}^3 &= 0 \\ \tilde{X}^4 &= -\frac{(\ell^2 + r^2)\ell}{\ell^2 + R(\tau_{\rm E})^2 + Y(\tau_{\rm E})^2} + \ell \end{split}$$

Takayuki Enari , In Collaboration with Akitsugu Miwa

	Calculation in Gauge Theory	Calculation in String Theory	
	0 00	0000 0000 00000000	
Semi-Classical Ev	aluation of Path Integral		

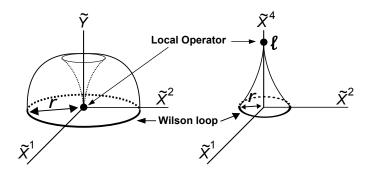
Table: Boundaries

	$ au_{E} ightarrow 0$	$\tau_{\rm E} \to \infty$
$ ilde{Y}(au_{E})$	0	0
$(ilde{X}^1(au_{E}), ilde{X}^2(au_{E}))$	$r(\cos\sigma,\sin\sigma)$	0
$ ilde{X}^3$	0	0
$ ilde{X}^4(au_{E})$	0	ℓ

r ... radius of the Wilson loop ℓ ... distance $W_C \leftrightarrow O_J$

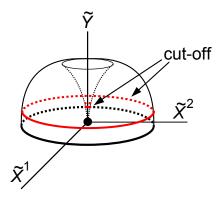
Takayuki Enari , In Collaboration with Akitsugu Miwa

	Calculation in Gauge Theory	Calculation in String Theory	
	0 00	0000 0000 0000000	
Semi-Classical Ev	aluation of Path Integral		



Takayuki Enari , In Collaboration with Akitsugu Miwa

	Calculation in Gauge Theory	Calculation in String Theory	
	0 00	0000 0000 00000000	
Semi-Classical Ev	valuation of Path Integral		



Takayuki Enari , In Collaboration with Akitsugu Miwa

College of Science and Technology, Nihon University

	Calculation in Gauge Theory	Calculation in String Theory	
	0 00	0000 0000 00000000	
Semi-Classical Ev	valuation of Path Integral		

evaluation of bulk action

$$\begin{split} S_{\mathsf{bulk}} &= \frac{\sqrt{\lambda}}{2} \int_{\tau_{-}}^{\tau_{+}} \left(\cosh^{2}\rho \, \dot{t_{\mathsf{E}}}^{2} + \dot{\rho}^{2} + \sinh^{2}\rho + \dot{\theta}^{2} + \sin^{2}\theta + \cos^{2}\theta \dot{\chi}_{3}^{2} \right) d\tau_{\mathsf{E}} \\ &\sim \sqrt{\lambda} \left(\frac{1}{\tau_{-}} - \sqrt{j^{2} + \cos^{2}\theta_{0}} \right) \end{split}$$

 $\tau_-, \ \tau_+ \ \dots \ \operatorname{cut-off}$

Takayuki Enari , In Collaboration with Akitsugu Miwa

	Calculation in Gauge Theory	Calculation in String Theory	
	0 00	0000 0000 000000000	
Semi-Classical Ev	valuation of Path Integral	,	

boundary term

Drukker-Gross-Ooguri prescription

$$\left. \frac{\partial L}{\partial \dot{u}} u \right|_{ au = au_{-}} = - rac{\sqrt{\lambda}}{ au_{-}} ~~ \left(u \equiv rac{1}{ ilde{Y}}
ight)$$

L ... Lagrangian

N. Drukker, D. Gross, and H. Ooguri, Phys. Rev. D60 (1999) 125006

Takayuki Enari , In Collaboration with Akitsugu Miwa

College of Science and Technology, Nihon University

	Calculation in Gauge Theory	Calculation in String Theory	
	0 00	0000 0000 000000000	
Semi-Classical Ev	aluation of Path Integral		

vertex operator $\leftrightarrow O_J$

$$\begin{aligned} J \ln \frac{\tilde{Y}}{\tilde{Y}^2 + \tilde{R}_{\ell}^2} \bigg|_{\tau_+} &= J[-\ln(\ell^2 + r^2) + j\tau_+ + \ln r + \ln(\sqrt{j^2 + 1} - j)], \\ J \ln(\cos\theta e^{i\chi_3})|_{\tau_+} &= J[-j\tau_+ + \ln(\sqrt{j'^2 + 1} - j') - \ln(\sqrt{j^2 + 1} - j)] \\ \left(j' \equiv \frac{j}{\cos\theta_0}, \ \tilde{R}_{\ell}^2 \equiv (\tilde{X}^1)^2 + (\tilde{X}^2)^2 + (\tilde{X}^3)^2 + (\tilde{X}^4 - \ell)^2\right) \end{aligned}$$

R. Roiban and A. A. Tseytlin, Phys. Rev. D82 (2010) 106011

Takayuki Enari , In Collaboration with Akitsugu Miwa

	Calculation in Gauge Theory	Calculation in String Theory	
	0 00	0000 0000 0000000●	
Semi-Classical Ev	aluation of Path Integral		

Result:
$$\frac{r^J}{(\ell^2 + r^2)^J} \exp \sqrt{\lambda'} [\sqrt{j'^2 + 1} + j' \ln(\sqrt{j'^2 + 1} - j')]$$

Zarembo's result: $\exp \sqrt{\lambda} \left[\sqrt{j^2 + 1} + j \ln(\sqrt{j^2 + 1} - j) \right]$

$$\left(\sqrt{\lambda'} \equiv \sqrt{\lambda}\cos\theta_0, \ j' \equiv \frac{j}{\cos\theta_0}\right)$$

K. Zarembo, Phys. Rev. D66 (2002) 105021

D. Berenstein, R. Corrado, W. Fischler, and J. Maldacena, Phys. Rev. D59 (1999) 105023

Takayuki Enari , In Collaboration with Akitsugu Miwa

College of Science and Technology, Nihon University

	Calculation in Gauge Theory	Calculation in String Theory	Another Saddle Point	
	0 00	0000 0000 00000000	000	
Another Saddle F	Point			

Another Saddle Point

another solution for EOM

$$\sin \theta = \frac{\sqrt{j^2 + 1}}{\cosh \sqrt{j^2 + 1}(-\tau_{\mathsf{E}} + \tau_0)}$$
$$\chi_3 = ij\tau_{\mathsf{E}} + \frac{i}{2}\ln\frac{\sinh(\sqrt{j^2 + 1}(-\tau_{\mathsf{E}} + \tau_0) - \xi)}{\sinh(\sqrt{j^2 + 1}(-\tau_{\mathsf{E}} + \tau_0) + \xi)} + \frac{i}{2}\ln\frac{\sinh(\sqrt{j^2 + 1}\tau_0 + \xi)}{\sinh(\sqrt{j^2 + 1}\tau_0 - \xi)}$$
$$(\xi \equiv \ln(\sqrt{j^2 + 1} + j))$$

Takayuki Enari , In Collaboration with Akitsugu Miwa

	Calculation in Gauge Theory O OO	Calculation in String Theory 0000 0000	Another Saddle Point ○●○	
Another Saddle F	Point	00000000		

evaluation of bulk action

$$S_{\rm bulk} \sim \sqrt{\lambda} \bigg(\frac{1}{\tau_-} + \sqrt{j^2 + \cos^2 \theta_0} \bigg)$$

vertex operator

$$J\ln(\cos\theta e^{i\chi_3})|_{\tau_+} = \pi i J + J[-j\tau_+ + \ln(\sqrt{j'^2 + 1} + j') - \ln(\sqrt{j^2 + 1} - j)]$$

Result:
$$\frac{r^{J}}{(\ell^{2}+r^{2})^{J}}(-1)^{J} \exp \sqrt{\lambda'} [-\sqrt{j'^{2}+1} + j' \ln(\sqrt{j'^{2}+1} + j')]$$

Takayuki Enari , In Collaboration with Akitsugu Miwa

College of Science and Technology, Nihon University

	Calculation in Gauge Theory	Calculation in String Theory	Another Saddle Point	
	0 00	0000 0000 00000000	000	
Another Saddle F	Point			

behavior of $\langle W_C O_J \rangle$

$$I_{J}(\sqrt{\lambda'}) = \frac{1}{2\pi i} \int_{\infty - \pi i}^{\infty + \pi i} \exp{\sqrt{\lambda'}} (\cosh x - j'x) dx$$

Another saddle point does not exist on the stationary phase contour:

$$x = -\ln(\sqrt{j'^2 + 1} + j') + \pi i.$$

Result:
$$\frac{r^J}{(\ell^2 + r^2)^J} (-1)^J \exp \sqrt{\lambda'} [-\sqrt{j'^2 + 1} + j' \ln(\sqrt{j'^2 + 1} + j')]$$

Takayuki Enari , In Collaboration with Akitsugu Miwa

College of Science and Technology, Nihon University

Calculation in Gauge Theory
00

Calculation in String Theory 0000 00000 00000000 Another Saddle Point

Summary and Future Works

Summary and Future Works

Summary

- ·gravity solution for correlation function
- ·supersymmetry ... coincide
- the solution reproduces the large-R behavior of the correlation function
- $\cdot \text{another gravity solution} \leftrightarrow \text{another saddle point of Bessel function}$

Future Works

- ·D-brane version
- ·exact calculation in gauge theory