Vortex counting and exact superpotential in N=(2,2) theories

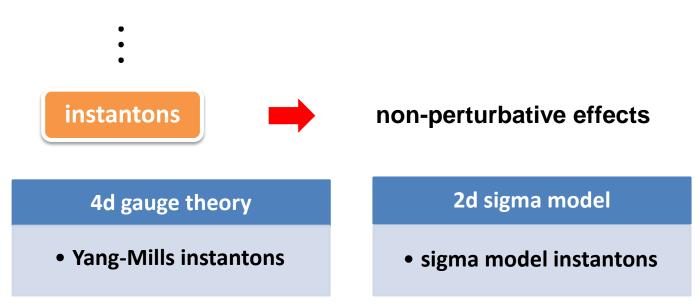
Toshiaki Fujimori (National Taiwan University)

Taro Kimura	(RIKEN)
Muneto Nitta	(Keio University)
Keisuke Ohashi	(Osaka City University)

1. Introduction

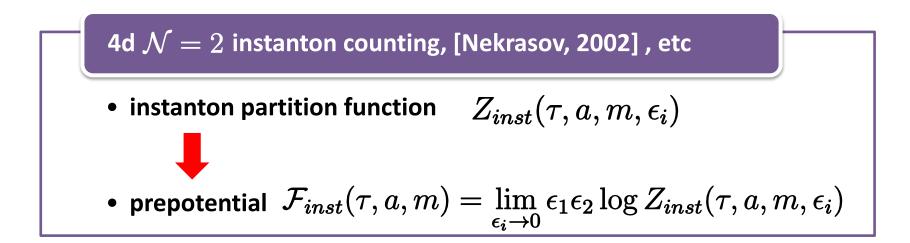
Similarity between 4d gauge theory and 2d sigma model

asymptotically free, anomaly, mass gap,



exact results in supersymmetric theories

instanton/vortex conting in 4d/2d supersymmetric gauge theories

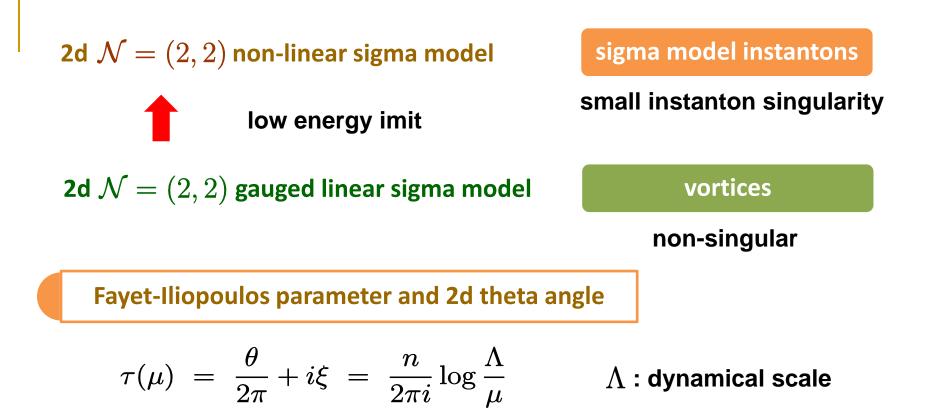


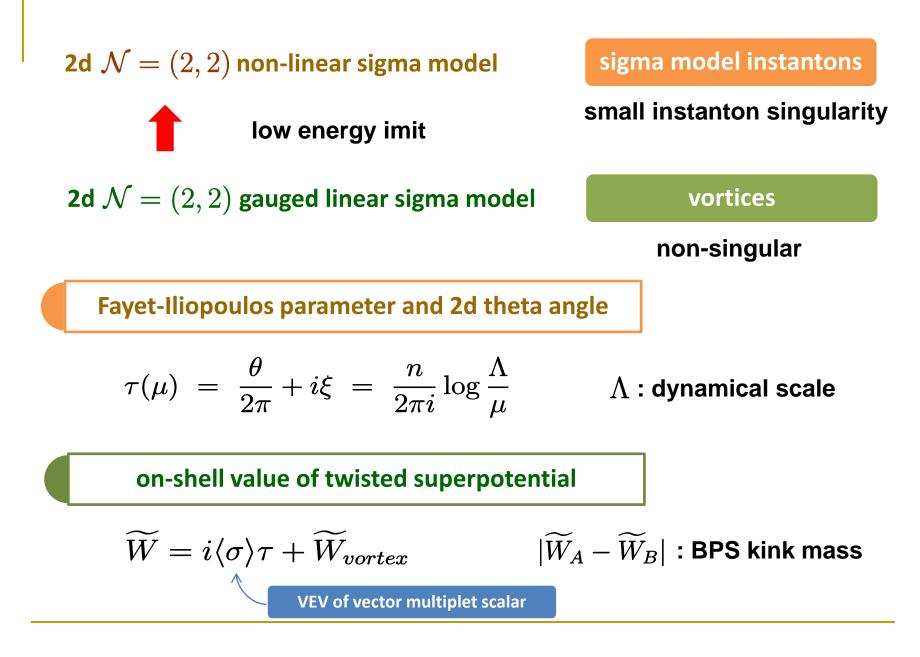


2d $\mathcal{N}=(2,2)$ non-linear sigma model

sigma model instantons

small instanton singularity

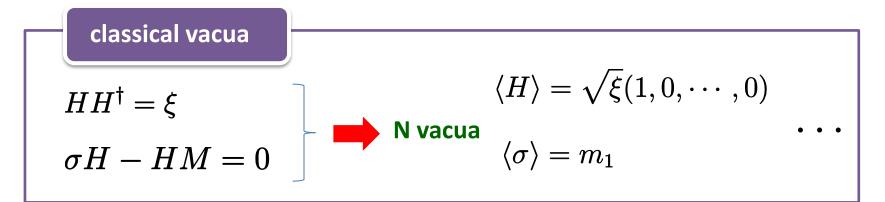




2. CP^{N-1} sigma model

U(1) gauge theory with N charged chiral multiplets

$$H = (H_1, H_2, \cdots, H_N)$$



$$M = \operatorname{diag}\left(m_1, m_2, \cdots, m_N\right)$$

twisted masses

$$H_0 = (z^k, 0, \cdots, 0), \qquad VH_0(e^{i\epsilon}z)e^{iM} = H_0(z), \quad V = e^{-im_1 - ik\epsilon}$$

 $H_0 = (z^k, 0, \cdots, 0),$ $VH_0(e^{i\epsilon}z)e^{iM} = H_0(z), \quad V = e^{-im_1 - ik\epsilon}$

neighborhood around the fixed point

$$\delta H_0 = (p_1, p_2, \cdots, p_N)$$
 $p_a(z) = \sum_{j=0}^{k-1} c_{a,j} z^j$

$$H_0 = (z^k, 0, \cdots, 0),$$
 $VH_0(e^{i\epsilon}z)e^{iM} = H_0(z), \quad V = e^{-im_1 - ik\epsilon}$

neighborhood around the fixed point

$$\delta H_0 = (p_1, p_2, \cdots, p_N)$$
 $p_a(z) = \sum_{j=0}^{k-1} c_{a,j} z^j$

invariant k-vortex moduli matrix

$$V\delta H_0(e^{i\epsilon}z)e^{iM} \implies c_{a,j} \to \exp\left[i(m_a - m_1) + i(k - j)\epsilon\right]c_{a,j}$$

$$H_0 = (z^k, 0, \cdots, 0),$$
 $VH_0(e^{i\epsilon}z)e^{iM} = H_0(z), \quad V = e^{-im_1 - ik\epsilon}$

neighborhood around the fixed point

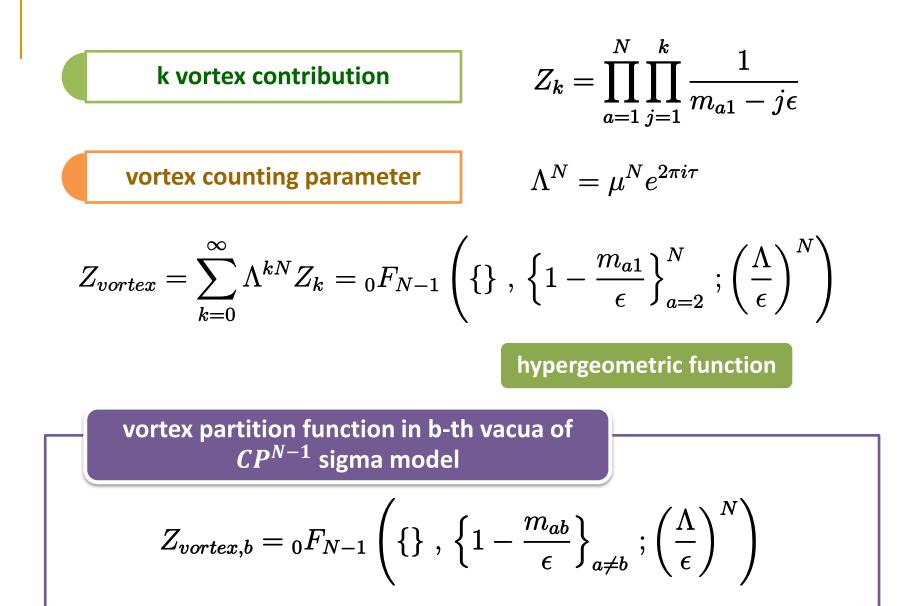
$$\delta H_0 = (p_1, p_2, \cdots, p_N)$$
 $p_a(z) = \sum_{j=0}^{k-1} c_{a,j} z^j$

invariant k-vortex moduli matrix

$$V\delta H_0(e^{i\epsilon}z)e^{iM} \longrightarrow c_{a,j} \to \exp\left[i(m_a - m_1) + i(k - j)\epsilon\right]c_{a,j}$$

k-vortex contribution

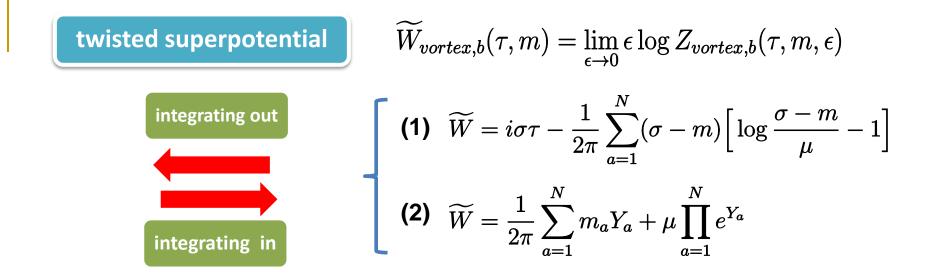
$$Z_k = \prod_{a=1}^N \prod_{j=0}^{k-1} \frac{1}{m_{a1} - (k-j)\epsilon} \qquad m_{a1} \equiv m_a - m_1$$

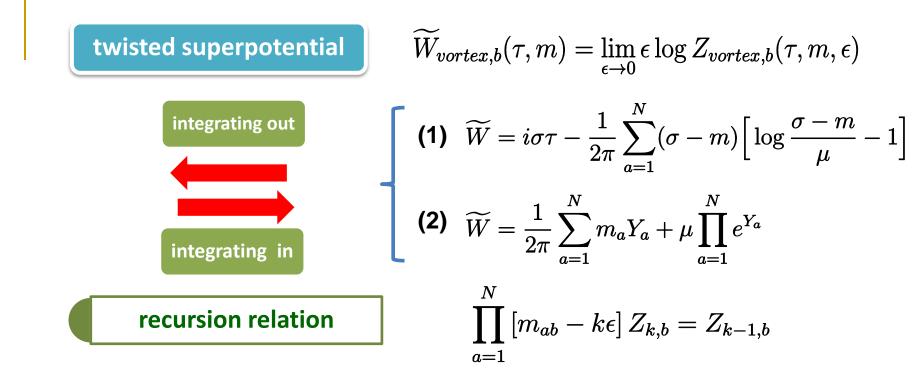


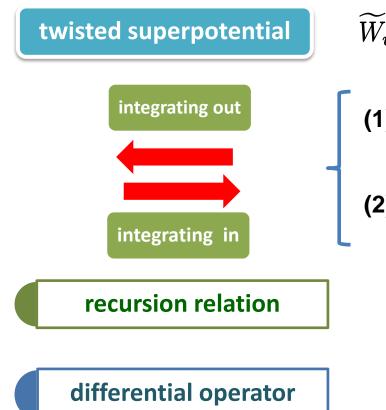
$$\widetilde{W}_{vortex,b}(\tau,m) = \lim_{\epsilon \to 0} \epsilon \log Z_{vortex,b}(\tau,m,\epsilon)$$

(1)
$$\widetilde{W} = i\sigma\tau - \frac{1}{2\pi}\sum_{a=1}^{N}(\sigma-m)\left[\log\frac{\sigma-m}{\mu} - 1\right]$$

(2)
$$\widetilde{W} = \frac{1}{2\pi} \sum_{a=1}^{N} m_a Y_a + \mu \prod_{a=1}^{N} e^{Y_a}$$







$$\widetilde{W}_{vortex,b}(\tau,m) = \lim_{\epsilon \to 0} \epsilon \log Z_{vortex,b}(\tau,m,\epsilon)$$

(1)
$$\widetilde{W} = i\sigma\tau - \frac{1}{2\pi}\sum_{a=1}^{N}(\sigma-m)\left[\log\frac{\sigma-m}{\mu} - 1\right]$$

(2)
$$\widetilde{W} = \frac{1}{2\pi} \sum_{a=1}^{N} m_a Y_a + \mu \prod_{a=1}^{N} e^{Y_a}$$

$$\prod_{a=1}^{N} \left[m_{ab} - k\epsilon \right] Z_{k,b} = Z_{k-1,b}$$

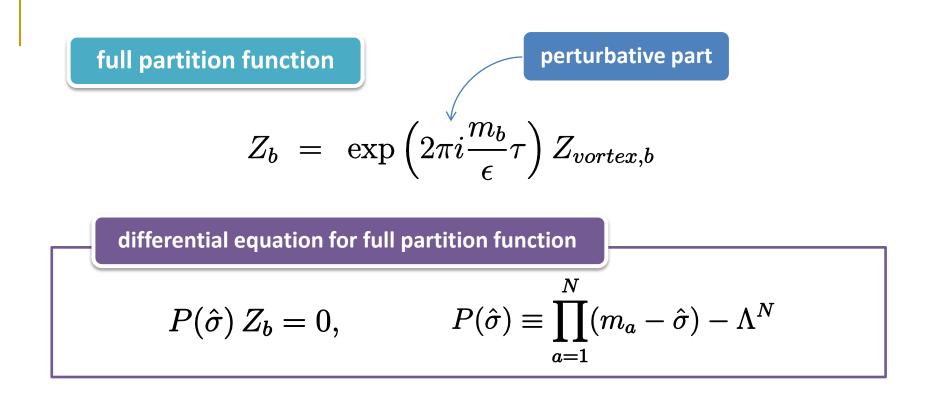
$$\hat{\sigma} \equiv \epsilon \Lambda^N \frac{\partial}{\partial \Lambda^N} = \frac{\epsilon}{2\pi i} \frac{\partial}{\partial \tau}$$

twisted superpotential
$$\widetilde{W}_{vortex,b}(\tau,m) = \lim_{\epsilon \to 0} \epsilon \log Z_{vortex,b}(\tau,m,\epsilon)$$
integrating out
integrating in(1) $\widetilde{W} = i\sigma\tau - \frac{1}{2\pi} \sum_{a=1}^{N} (\sigma - m) \left[\log \frac{\sigma - m}{\mu} - 1 \right]$ (2) $\widetilde{W} = \frac{1}{2\pi} \sum_{a=1}^{N} m_a Y_a + \mu \prod_{a=1}^{N} e^{Y_a}$ recursion relation $\prod_{a=1}^{N} [m_{ab} - k\epsilon] Z_{k,b} = Z_{k-1,b}$ differential operator $\hat{\sigma} \equiv \epsilon \Lambda^N \frac{\partial}{\partial \Lambda^N} = \frac{\epsilon}{2\pi i} \frac{\partial}{\partial \tau}$ differential equation for $Z_{vortex,b}$ $\prod_{a=1}^{N} [m_{ab} - \hat{\sigma}] Z_{vortex,b} = \prod_{a=1}^{N} [m_{ab} - \hat{\sigma}] \sum_{k=0}^{\infty} \Lambda^{Nk} Z_{k,b}$

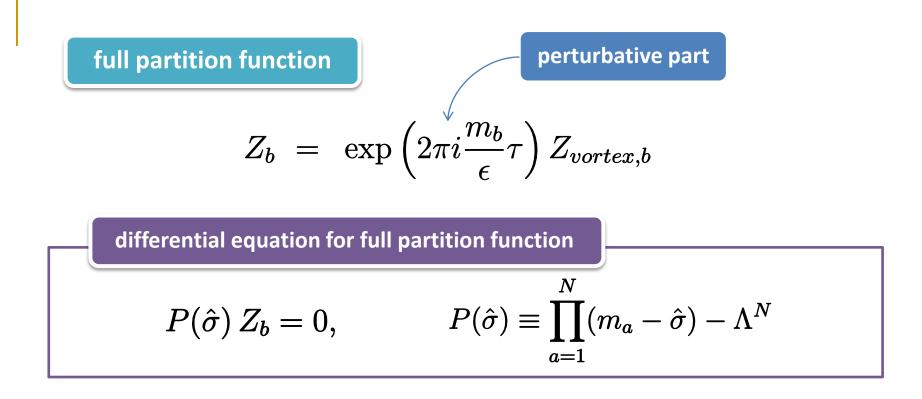
twisted superpotential
$$\widetilde{W}_{vortex,b}(\tau,m) = \lim_{\epsilon \to 0} \epsilon \log Z_{vortex,b}(\tau,m,\epsilon)$$
integrating out
integrating in(1) $\widetilde{W} = i\sigma\tau - \frac{1}{2\pi}\sum_{a=1}^{N}(\sigma-m)\left[\log\frac{\sigma-m}{\mu}-1\right]$ (2) $\widetilde{W} = \frac{1}{2\pi}\sum_{a=1}^{N}m_aY_a + \mu\prod_{a=1}^{N}e^{Y_a}$ recursion relation $\prod_{a=1}^{N}\left[m_{ab}-k\epsilon\right]Z_{k,b} = Z_{k-1,b}$ differential operator $\hat{\sigma} \equiv \epsilon\Lambda^N\frac{\partial}{\partial\Lambda^N} = \frac{\epsilon}{2\pi i}\frac{\partial}{\partial\tau}$ differential equation for $Z_{vortex,b}$ $\prod_{a=1}^{N}\left[m_{ab}-\hat{\sigma}\right]Z_{vortex,b} = \sum_{k=0}^{\infty}\prod_{a=1}^{N}\left[m_{ab}-k\epsilon\right]\Lambda^{Nk}Z_{k,b}$

twisted superpotential
$$\widetilde{W}_{vortex,b}(\tau,m) = \lim_{\epsilon \to 0} \epsilon \log Z_{vortex,b}(\tau,m,\epsilon)$$
integrating out
integrating in(1) $\widetilde{W} = i\sigma\tau - \frac{1}{2\pi}\sum_{a=1}^{N}(\sigma-m)\left[\log\frac{\sigma-m}{\mu}-1\right]$ (2) $\widetilde{W} = \frac{1}{2\pi}\sum_{a=1}^{N}m_aY_a + \mu\prod_{a=1}^{N}e^{Y_a}$ recursion relation $\prod_{a=1}^{N}[m_{ab}-k\epsilon] Z_{k,b} = Z_{k-1,b}$ differential operator $\hat{\sigma} \equiv \epsilon\Lambda^N\frac{\partial}{\partial\Lambda^N} = \frac{\epsilon}{2\pi i}\frac{\partial}{\partial\tau}$ differential equation for $Z_{vortex,b}$ $\prod_{a=1}^{N}[m_{ab}-\hat{\sigma}] Z_{vortex,b} = \sum_{k=0}^{\infty}\Lambda^{Nk}Z_{k-1,b}$

twisted superpotential
$$\widetilde{W}_{vortex,b}(\tau,m) = \lim_{\epsilon \to 0} \epsilon \log Z_{vortex,b}(\tau,m,\epsilon)$$
integrating out
integrating in(1) $\widetilde{W} = i\sigma\tau - \frac{1}{2\pi} \sum_{a=1}^{N} (\sigma - m) \left[\log \frac{\sigma - m}{\mu} - 1 \right]$ (2) $\widetilde{W} = \frac{1}{2\pi} \sum_{a=1}^{N} m_a Y_a + \mu \prod_{a=1}^{N} e^{Y_a}$ recursion relation $\prod_{a=1}^{N} [m_{ab} - k\epsilon] Z_{k,b} = Z_{k-1,b}$ differential operator $\hat{\sigma} \equiv \epsilon \Lambda^N \frac{\partial}{\partial \Lambda^N} = \frac{\epsilon}{2\pi i} \frac{\partial}{\partial \tau}$ differential equation for $Z_{vortex,b}$ $\prod_{a=1}^{N} [m_{ab} - \hat{\sigma}] Z_{vortex,b} = \Lambda^N Z_{vortex,b}$



• $P(\hat{\sigma})$ is independent of choice of vacuum

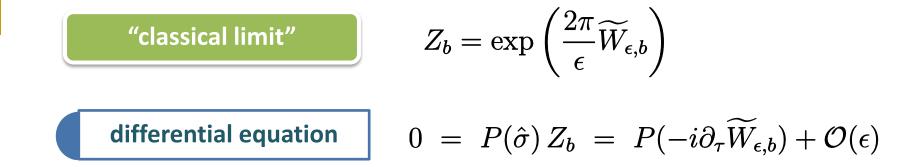


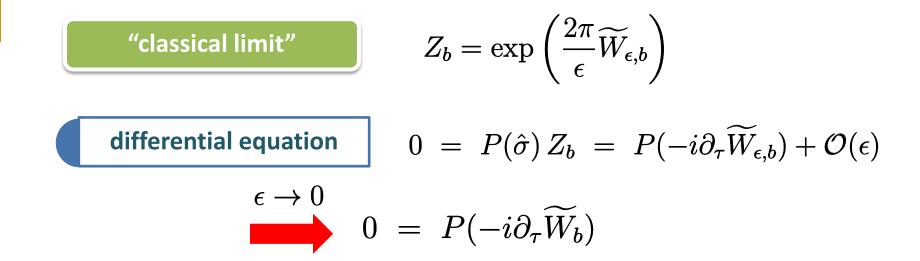
• $P(\hat{\sigma})$ is independent of choice of vacuum

$$Z_b \ (b=1,\cdots,N)$$
 are linearly independent solutions of $\ P(\hat{\sigma}) \ Z_b = 0$

"classical limit"

$$Z_b = \exp\left(\frac{2\pi}{\epsilon}\widetilde{W}_{\epsilon,b}\right)$$





"classical limit"

$$Z_b = \exp\left(\frac{2\pi}{\epsilon}\widetilde{W}_{\epsilon,b}\right)$$

 differential equation
 $0 = P(\hat{\sigma}) Z_b = P(-i\partial_{\tau}\widetilde{W}_{\epsilon,b}) + \mathcal{O}(\epsilon)$
 $\epsilon \to 0$
 $0 = P(-i\partial_{\tau}\widetilde{W}_b)$

F-term condition $\partial_{\sigma}\widetilde{W}=0$

$$\widetilde{W} = i\sigma\tau - \frac{1}{2\pi} \sum_{a=1}^{N} (\sigma - m_a) \left[\log \frac{\sigma - m_a}{\mu} - 1 \right] \longrightarrow P(\sigma) = 0$$

"classical limit"
$$Z_b = \exp\left(\frac{2\pi}{\epsilon}\widetilde{W}_{\epsilon,b}\right)$$
differential equation $0 = P(\hat{\sigma}) Z_b = P(-i\partial_{\tau}\widetilde{W}_{\epsilon,b}) + \mathcal{O}(\epsilon)$ $\epsilon \to 0$ $0 = P(-i\partial_{\tau}\widetilde{W}_b)$

F-term condition $\partial_{\sigma}\widetilde{W}=0$

$$\widetilde{W} = i\sigma\tau - \frac{1}{2\pi} \sum_{a=1}^{N} (\sigma - m_a) \left[\log \frac{\sigma - m_a}{\mu} - 1 \right] \longrightarrow P(\sigma) = 0$$

$$P(\hat{\sigma}) Z_b = 0$$

$$[\hat{\tau}, \hat{\sigma}] = i\hbar = -\frac{\epsilon}{2\pi i}$$

+ \tilde{N} chiral multiplets of charge -1

+ \tilde{N} chiral multiplets of charge -1

k-vortex contribution
$$Z_k = \prod_{a=1}^N \prod_{j=1}^k \frac{1}{m_{a1} - j\epsilon} \times \prod_{a=1}^{\tilde{N}} \prod_{j=1}^k (\tilde{m}_{a1} - j\epsilon)$$

+ \tilde{N} chiral multiplets of charge -1

k-vortex contribution
$$Z_k = \prod_{a=1}^N \prod_{j=1}^k \frac{1}{m_{a1} - j\epsilon} \times \prod_{a=1}^{\tilde{N}} \prod_{j=1}^k (\tilde{m}_{a1} - j\epsilon)$$

recursion relation

$$\prod_{a=1}^{N} \prod_{j=1}^{k} (m_{a1} - k\epsilon) Z_{k} = \prod_{a=1}^{\tilde{N}} \prod_{j=1}^{k} (\tilde{m}_{a1} - k\epsilon) Z_{k-1}$$

+ \tilde{N} chiral multiplets of charge -1

$$\textbf{k-vortex contribution} \quad Z_k = \prod_{a=1}^N \prod_{j=1}^k \frac{1}{m_{a1} - j\epsilon} \ \times \ \prod_{a=1}^{\tilde{N}} \prod_{j=1}^k \left(\tilde{m}_{a1} - j\epsilon \right)$$

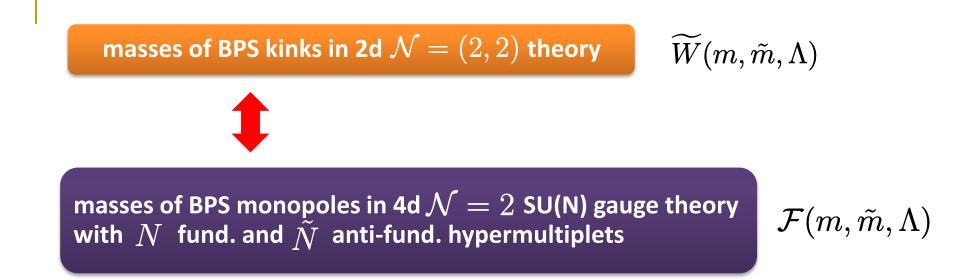
recursion relation

$$\prod_{a=1}^{N} \prod_{j=1}^{k} (m_{a1} - k\epsilon) Z_{k} = \prod_{a=1}^{\tilde{N}} \prod_{j=1}^{k} (\tilde{m}_{a1} - k\epsilon) Z_{k-1}$$

differential equation

$$P(\hat{\sigma}) Z_b = 0,$$

$$P(\hat{\sigma}) = \prod_{a=1}^{N} (m_a - \hat{\sigma}) - \Lambda^{N - \tilde{N}} \prod_{\tilde{a}=1}^{\tilde{N}} (\tilde{m}_{\tilde{a}} - \hat{\sigma})$$



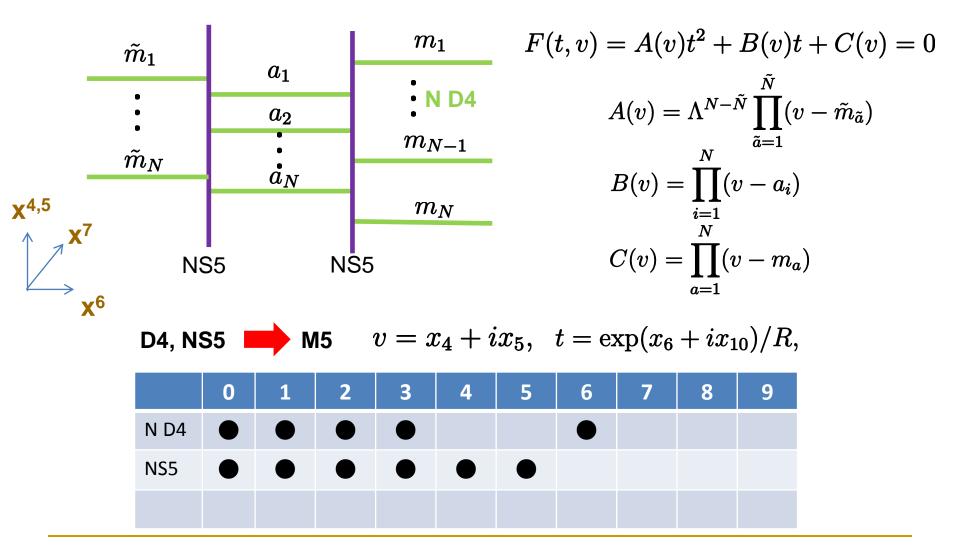
root of Higgs branch

 $a_i=m_i$ (classical)

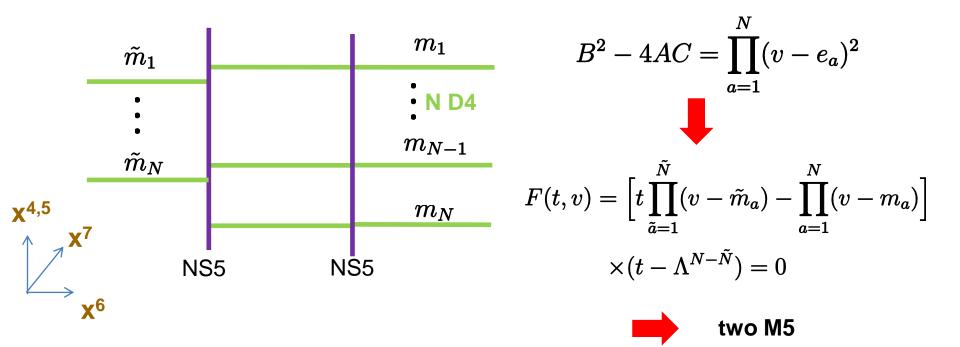
$$F(t,v) = \left[t\prod_{\tilde{a}=1}^{\tilde{N}} (v - \tilde{m}_{a}) - \prod_{a=1}^{N} (v - m_{a})\right] (t - \Lambda^{N - \tilde{N}}) = 0$$

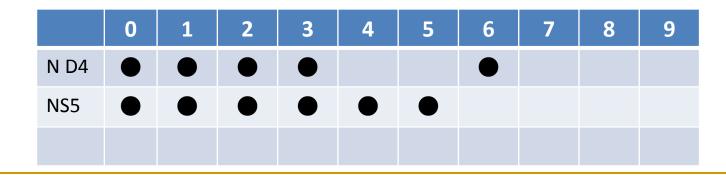
[Dorey, 1998], [Shifman-Yung, 2004], [Hanany-Tong, 2004], etc

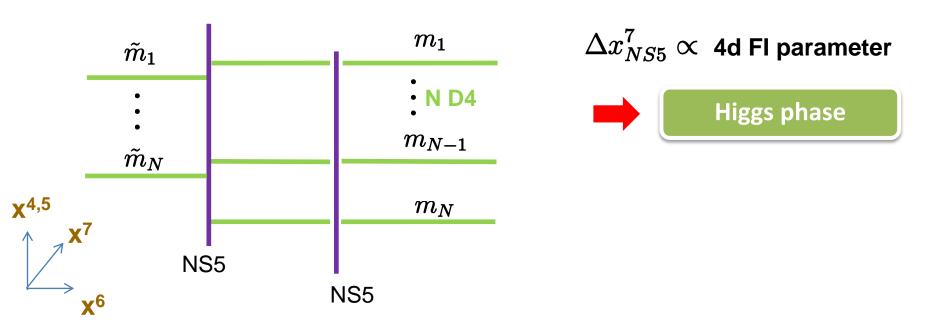
4d gauge theory at root of Higgs branch

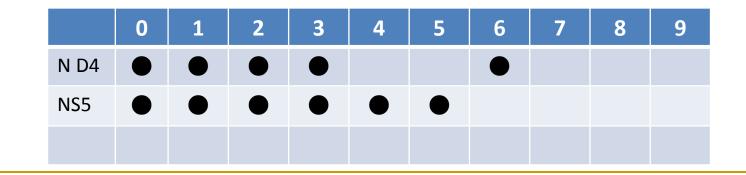


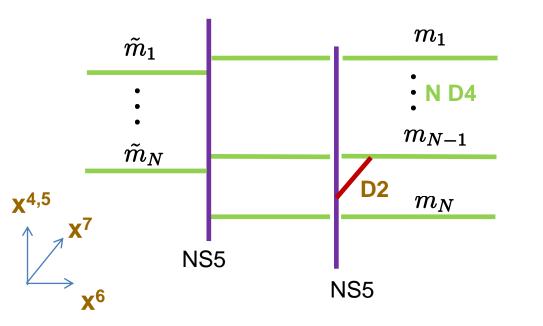
4d gauge theory at root of Higgs branch



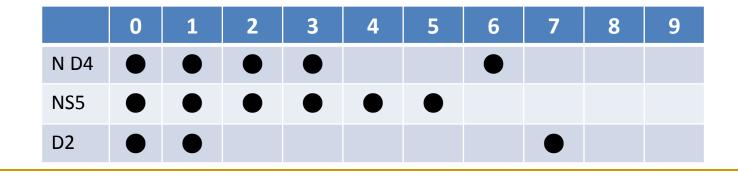


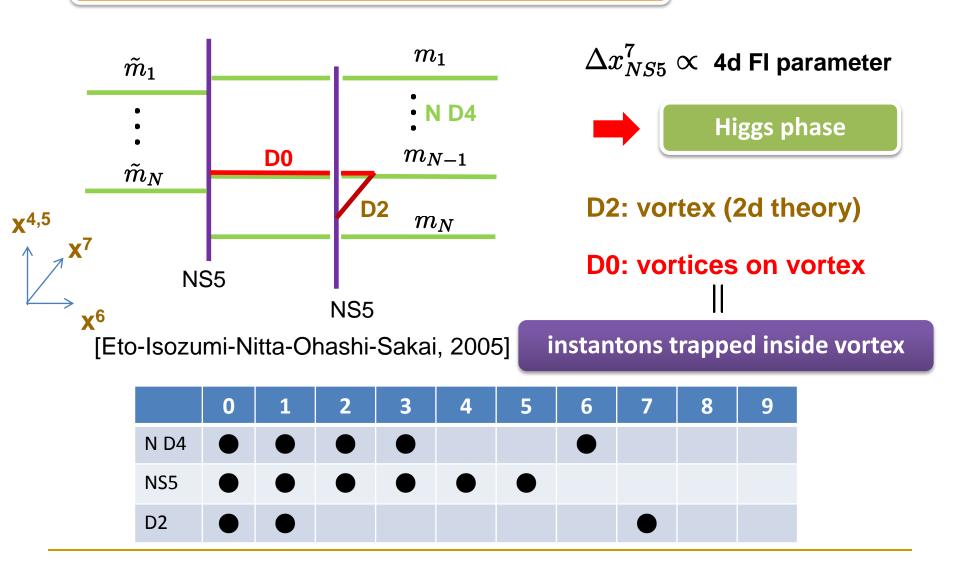


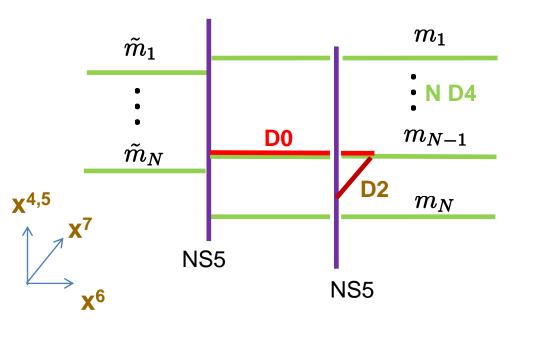




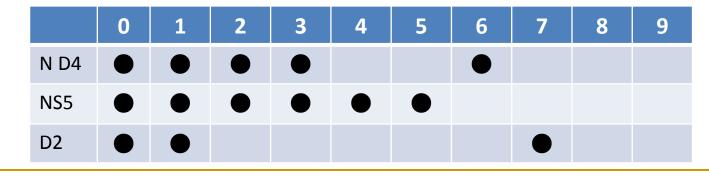
D2: vortex (2d theory)







$$\begin{bmatrix} t \prod_{\tilde{a}=1}^{\tilde{N}} (v - \tilde{m}_{a}) - \prod_{a=1}^{N} (v - m_{a}) = 0 \\ t - \Lambda^{N - \tilde{N}} = 0 \end{bmatrix}$$
$$\stackrel{\bullet}{\longrightarrow} P(v) = 0$$
$$\sigma : v \text{ of } M2 \quad \tau : \log t \text{ of } M2 \\ [\hat{\sigma}, \hat{\tau}] = \frac{\epsilon}{2\pi} : \text{non-commutativity}$$



3. Grassmaniann sigma model

U(N) gauge theory with Nf charged chiral multiplets

fixed point
$$H_0^{\vec{k}} = \begin{pmatrix} z^{k_1} & & & 0 & \cdots & 0 \\ & \ddots & & \vdots & \vdots \\ & & z^{k_N} & 0 & \cdots & 0 \end{pmatrix}$$

tangent space

$$\delta H_0^{\vec{k}} = \begin{pmatrix} \sum_{j=1}^{k_1} c_{11,j} z^{j-1} & \cdots & \sum_{j=1}^{k_N} c_{1N,j} z^{j-1} \\ \vdots & \ddots & \vdots \\ \sum_{j=1}^{k_1} c_{N1,j} z^{j-1} & \cdots & \sum_{j=1}^{k_N} c_{NN,j} z^{j-1} \\ & \vdots & \ddots & \vdots \\ \sum_{j=1}^{k_N} c_{N1,j} z^{j-1} & \cdots & \sum_{j=1}^{k_N} c_{NN,j} z^{j-1} \\ & & \sum_{j=1}^{k_N} d_{N1,j} z^{j-1} & \cdots & \sum_{j=1}^{k_N} d_{N\tilde{N}} z^{j-1} \end{pmatrix}$$

contribution from the fixed point

$$Z_{(k_1,\cdots,k_n)} = \left(\prod_{l=1}^{N}\prod_{m=1}^{N}\prod_{j=1}^{k_m}\frac{1}{m_{ml} + (k_l - j + 1)\epsilon}\right) \times \left(\prod_{l=1}^{N}\prod_{s=1}^{\tilde{N}}\prod_{j=1}^{k_l}\frac{1}{m_{n+s,l} + (k_l - j + 1)\epsilon}\right)$$

contribution from the fixed point

$$Z_{(k_1,\cdots,k_n)} = \left(\prod_{l=1}^{N}\prod_{m=1}^{N}\prod_{j=1}^{k_m}\frac{1}{m_{ml} + (k_l - j + 1)\epsilon}\right) \times \left(\prod_{l=1}^{N}\prod_{s=1}^{\tilde{N}}\prod_{j=1}^{k_l}\frac{1}{m_{n+s,l} + (k_l - j + 1)\epsilon}\right)$$

vortex counting parameters

$$\Lambda : \text{overall} \quad U(1) \longrightarrow \Lambda_i : U(1)^N \quad \bigoplus \quad \hat{\sigma}_i \equiv \epsilon \Lambda_i^{N_{\text{F}}} \frac{\partial}{\partial \Lambda_i^{N_{\text{F}}}} = \frac{\epsilon}{2\pi i} \frac{\partial}{\partial \tau_i}$$

contribution from the fixed point

$$Z_{(k_{1},\cdots,k_{n})} = \left(\prod_{l=1}^{N}\prod_{m=1}^{N}\prod_{j=1}^{k_{m}}\frac{1}{m_{ml}+(k_{l}-j+1)\epsilon}\right) \times \left(\prod_{l=1}^{N}\prod_{s=1}^{\tilde{N}}\prod_{j=1}^{k_{l}}\frac{1}{m_{n+s,l}+(k_{l}-j+1)\epsilon}\right)$$
vortex counting parameters
$$\Lambda : \text{overall } U(1) \longrightarrow \Lambda_{i} : U(1)^{N} \bigoplus \hat{\sigma}_{i} \equiv \epsilon \Lambda_{i}^{N_{\mathrm{F}}} \frac{\partial}{\partial \Lambda_{i}^{N_{\mathrm{F}}}} = \frac{\epsilon}{2\pi i} \frac{\partial}{\partial \tau_{i}}$$
vortex partition function of
Grassmaniann sigma model
$$Z_{vortex} = \sum_{k_{1}=0}^{\infty} \cdots \sum_{k_{N}=0}^{\infty} \Lambda_{1}^{N_{f}k_{1}} \cdots \Lambda_{N}^{N_{f}k_{N}} Z_{(k_{1},\cdots,k_{N})}$$

$$= \prod_{l>m} \frac{m_{ml} + \hat{\sigma}_{l} - \hat{\sigma}_{m}}{m_{ml}} \prod_{l=1}^{N} \circ F_{N_{f}-1} \left(\{\}; \{1 + \frac{m_{la}}{\epsilon}\}_{a\neq l}; \frac{\Lambda_{l}^{N_{f}}}{\epsilon^{n_{f}}}\right)$$

$$Z_{(\dots,k_i+1,\dots)} = (-1)^{n-1} \prod_{m=1}^{N_f} \frac{1}{m_{mi} + (k_i+1)\epsilon} \prod_{m\neq i}^N \frac{m_{mi} + (k_i - k_m + 1)\epsilon}{m_{mi} + (k_i - k_m)\epsilon} Z_{(\dots,k_i,\dots)}$$

$$Z_{(\dots,k_i+1,\dots)} = (-1)^{n-1} \prod_{m=1}^{N_f} \frac{1}{m_{mi} + (k_i+1)\epsilon} \prod_{m\neq i}^N \frac{m_{mi} + (k_i - k_m + 1)\epsilon}{m_{mi} + (k_i - k_m)\epsilon} Z_{(\dots,k_i,\dots)}$$

differential equation for Z

$$P_i(\hat{\sigma}_1,\cdots,\hat{\sigma}_N) Z = 0 \quad (i=1,\cdots,N)$$

$$Z_{(\dots,k_i+1,\dots)} = (-1)^{n-1} \prod_{m=1}^{N_f} \frac{1}{m_{mi} + (k_i+1)\epsilon} \prod_{m\neq i}^N \frac{m_{mi} + (k_i - k_m + 1)\epsilon}{m_{mi} + (k_i - k_m)\epsilon} Z_{(\dots,k_i,\dots)}$$

differential equation for Z

$$P_i(\hat{\sigma}_1, \cdots, \hat{\sigma}_N) Z = 0 \quad (i = 1, \cdots, N)$$
$$P_i(\hat{\sigma}_1, \cdots, \hat{\sigma}_n) = \prod_{m=1}^{N_F} (\hat{\sigma}_i + m_m) \prod_{m \neq i}^N (\hat{\sigma}_i - \hat{\sigma}_m - \epsilon) + (-1)^N \Lambda_i^{N_f} \prod_{m \neq i}^N (\hat{\sigma}_i - \hat{\sigma}_m + \epsilon)$$

$$Z_{(\dots,k_i+1,\dots)} = (-1)^{n-1} \prod_{m=1}^{N_f} \frac{1}{m_{mi} + (k_i+1)\epsilon} \prod_{m \neq i}^{N} \frac{m_{mi} + (k_i - k_m + 1)\epsilon}{m_{mi} + (k_i - k_m)\epsilon} Z_{(\dots,k_i,\dots)}$$

differential equation for \boldsymbol{Z}

$$P_i(\hat{\sigma}_1, \cdots, \hat{\sigma}_N) Z = 0 \quad (i = 1, \cdots, N)$$

$$P_i(\hat{\sigma}_1,\cdots,\hat{\sigma}_n) = \prod_{m=1}^{N_F} \left(\hat{\sigma}_i + m_m\right) \prod_{m \neq i}^N \left(\hat{\sigma}_i - \hat{\sigma}_m - \epsilon\right) + (-1)^N \Lambda_i^{N_f} \prod_{m \neq i}^N \left(\hat{\sigma}_i - \hat{\sigma}_m + \epsilon\right)$$

$$\xrightarrow{\epsilon \to 0} P_i(\sigma_1, \cdots, \sigma_n) = \prod_{m \neq i}^N \left(\sigma_i - \sigma_m\right) \left[\prod_{m=1}^{N_F} \left(\hat{\sigma}_i + m_m\right) + (-1)^N \Lambda_i^{N_f}\right]$$

$$Z_{(\dots,k_i+1,\dots)} = (-1)^{n-1} \prod_{m=1}^{N_f} \frac{1}{m_{mi} + (k_i+1)\epsilon} \prod_{m\neq i}^N \frac{m_{mi} + (k_i - k_m + 1)\epsilon}{m_{mi} + (k_i - k_m)\epsilon} Z_{(\dots,k_i,\dots)}$$

differential equation for \boldsymbol{Z}

$$P_i(\hat{\sigma}_1,\cdots,\hat{\sigma}_N) Z = 0 \quad (i=1,\cdots,N)$$

$$P_i(\hat{\sigma}_1,\cdots,\hat{\sigma}_n) = \prod_{m=1}^{N_F} (\hat{\sigma}_i + m_m) \prod_{m \neq i}^N \left(\hat{\sigma}_i - \hat{\sigma}_m - \epsilon \right) + (-1)^N \Lambda_i^{N_f} \prod_{m \neq i}^N \left(\hat{\sigma}_i - \hat{\sigma}_m + \epsilon \right)$$

$$\xrightarrow{\epsilon \to 0} P_i(\sigma_1, \cdots, \sigma_n) = \prod_{m \neq i}^N \left(\sigma_i - \sigma_m\right) \left[\prod_{m=1}^{N_F} \left(\hat{\sigma}_i + m_m\right) + (-1)^N \Lambda_i^{N_f}\right]$$

= F-term equation of
$$\widetilde{W}(\tau_i, \sigma_i) = \sum_{i=1}^{N} \left[i\sigma_i \tau_i - \frac{1}{2\pi} \sum_{l=1}^{N_f} (\sigma_i + m_l) \left(\log \frac{\sigma_i + m_l}{\mu} - 1 \right) \right]$$

Twisted superpotential from vortex partition function

- Twisted superpotential from vortex partition function
- differential equation for vortex partition function

$$P(\hat{\sigma}, m, \tau, \epsilon) Z(m, \tau, \epsilon) = 0, \qquad [\hat{\sigma}, \hat{\tau}] = \frac{\epsilon}{2\pi}$$

- Twisted superpotential from vortex partition function
- differential equation for vortex partition function

$$P(\hat{\sigma}, m, \tau, \epsilon) Z(m, \tau, \epsilon) = 0, \qquad [\hat{\sigma}, \hat{\tau}] = \frac{\epsilon}{2\pi}$$

"classical limit": differential equation
F-term equation

$$P(\sigma, m, \tau, 0) = 0$$
 ··· agreement with known results

- Twisted superpotential from vortex partition function
- differential equation for vortex partition function

$$P(\hat{\sigma}, m, \tau, \epsilon) Z(m, \tau, \epsilon) = 0,$$
 $[\hat{\sigma}, \hat{\tau}] = \frac{\epsilon}{2\pi}$
• "classical limit": differential equation \rightarrow F-term equation
 $P(\sigma, m, \tau, 0) = 0$ ··· agreement with known results

• Abelian case: YM instantons trapped inside vortex worldvolume

- Twisted superpotential from vortex partition function
- differential equation for vortex partition function

$$P(\hat{\sigma}, m, \tau, \epsilon) Z(m, \tau, \epsilon) = 0,$$
 $[\hat{\sigma}, \hat{\tau}] = \frac{\epsilon}{2\pi}$
"classical limit": differential equation
 $P(\sigma, m, \tau, 0) = 0$... agreement with known results

- Abelian case: YM instantons trapped inside vortex worldvolume
- non-Abelian case: worldvolume theory of multiple vortices?

vortex worldvolume theory

2d N=(2,2) U(k) theory with N fund. + \tilde{N} anti-fund. + one adjoint $I \qquad J \qquad B$

 ϵ_1 : mass for B (vortex position) ϵ_2 : 2d Ω -deformation

