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SYM STRING
large-N, 

strong coupling
SUGRA
easier

large-N, 
finite coupling

tree-level string 
(SUGRA+α’)
more difficult

finite-N, 
finite coupling

Quantum string
(gstring>0)

very difficult

difficult

use Monte Carlo to study string theory!

Gauge/gravity duality 



• Form the string theory point of view,        
SYM theories in less than four spacetime 
dimensions are as interesting as four 
dimensional theories!

(0+1)-d SYM  ⇔  Black hole  

(1+1)-d SYM  ⇔  Black 1-brane, black string 

(3+1)-d SYM  ⇔ Black 3-brane  (AdS5×S5)
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What is Monte Carlo?



The principle of Monte-Carlo
• Consider field theory on Euclidean spacetime 

with the action        . 

• Generate field configurations with 
probability            . Then, 

•  Such a set of configurations can be 
generated as long as                                   
(not ‘probability’ otherwise...)



Algorithm 
• generate a chain of field configurations with 

the transition probability

• ‘Markov chain’ : transition probability from 
Ck to Ck+1 does not depend on C0,...,Ck-1

: probability of obtaining C at k-th step

Choose                   so that 



Algorithm (cont’d)

‘algorithm’ = choice of 

• Metropolis 

• Hybrid Monte Carlo (HMC)

• Rational Hybrid Monte Carlo (RHMC)

                   .....etc etc...

simplest 
useful for fermions

Nicholas Constantine Metropolis 
                 (1915 – 1999)



  
The simplest  example

(Gaussian integral)



Metropolis algorithm

• Consider the Gaussian integral, 

(1) vary the ‘field’ x randomly:

(2) accept the new ‘configuration’ with a probability 

where 

‘Metropolis test’

(Metropolis-Rosenbluth-et al, 1953)



Initial condition :  x=0
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In typical YM simulations, with better algorithm, 
reasonable results can be obtained from 100 - 

1000 configurations, if the theory does not 
suffer from the ‘sign problem’. 

Note



Initial condition :  x=10

quickly ‘thermalizes’

use only these configurations
to calculate the expectation value.

after the thermalization, configuration 
with small weight never appears in practice 

→ “importance sampling”



Fermions appear in a bilinear form. 
(if not.. make them bilinear by introducing auxiliary fields!)

can be integrated out by hand.

So, simply use the ‘effective action’, 

(crucial assumption :  det D > 0 )

Fermion
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Pure Yang-Mills
(bosonic)

warm-up example : 



Wilson’s lattice gauge theory

μ

ν
x

Unitary link variable

: lattice spacing



‘Exact’ symmetries

• Gauge symmetry

• 90 degrees rotation

• discrete translation

• Charge conjugation, parity

These symmetries exist at discretized level.



Continuum limit             respects exact      
symmetries at discretized level. 

Exact symmetries at discretized level
 
gauge invariance, translational invariance,
rotationally invariant,... in the continuum limit.    
 

What happens if the gauge symmetry is 
explicitly (not spontaneously) broken, 

(e.g. the sharp momentum cutoff prescription)? 



• We are interested in low-energy, long-distance 
physics (compared to the lattice spacing    ). 

• So let us integrate out high frequency modes. 

Then...

gauge symmetry breaking radiative corrections can appear.
 

To kill them, one has to add counterterms to lattice 
action, whose coefficients must be fine-tuned!

‘fine tuning problem’

This is the reason why we must 
preserve symmetries exactly. 



Super Yang-Mills



‘No-Go’ for lattice SYM

• SUSY algebra contains infinitesimal translation. 

• Infinitesimal translation is broken on lattice by 
construction.

• So it is impossible to keep all supercharges 
exactly on lattice. 

• Still it is possible to preserve a part of 
supercharges. (subalgebra which does not 
contain ∂)



Strategy

• 1d : no problem thanks to UV finiteness. Lattice 
is not needed; momentum cutoff method is 
much more powerful.                                   
(M.H.-Nishimura-Takeuchi 2007)

• 2d : lattice with a few exact SUSY+R-symmetry    
• no fine tuning at perturbative level (Cohen-Kaplan-

Katz-Unsal 2003, Sugino 2003, Catterall 2003, D’Adda et al 2005, ... )                                      
• works even nonperturbatively (←simulation)                                                 
(Kanamori-Suzuki 2008, M.H.-Kanamori 2009, 2010)

Use other exact symmetries and/or a few exact 
SUSY to forbid SUSY breaking radiative correction.



• 3d N=8 : “Hybrid” formulation:                                                   
BMN matrix model + fuzzy sphere                           
(Maldacena-Seikh Jabbari-Van Raamsdonk 2002)                                                                                                           

• 4d N=1 pure SYM : lattice chiral fermion assures SUSY              
(Kaplan 1984, Curci-Veneziano 1986)

• 4d N=4 :  

• again “Hybrid” formulation:Lattice + fuzzy sphere 
  (M.H.-Matsuura-Sugino 2010, M.H. 2010)

•Large-N Eguchi-Kawai reduction(Ishii-Ishiki-Shimasaki-Tsuchiya, 2008)

•Another Matrix model approach(Heckmann-Verlinde, 2011)

•recent analysis of 4d lattice: 
 Fine tuning is needed, but only for 3 bare lattice couplings. 
 (Catterall-Dzienkowski-Giedt-Joseph-Wells, 2011)



SIGN PROBLEM



Fermions appear in a bilinear form. 
(if not.. make them bilinear by introducing auxiliary fields!)

can be integrated out by hand.

Monte Carlo cannot be used 
if it is not real positive



‘reweighting method’
• Use the ‘phase-quenched’ effective action

• Phase can be taken into account by the 
‘phase reweighting’ : 



usually the reweighting does 
not work in practice...

• violent phase fluctuation 
  → both numerator and denominator 
       becomes almost zero. 

• vacua of full and phase-quenched model can disagree. 
‘overlapping problem’

0/0 = ??



Miracles happen in SYM!
• Almost no phase except for 

              very low temperature and/or SU(2). 
(Anagnostopoulos-M.H.-Nishimura-Takeuchi 2007, 

Catterall-Wiseman 2008, Catterall et al 2011, 
Buchoff-M.H.-Matsuura, in progress.)

• Even when the phase fluctuates, 
   phase quench gives right answer. 

           (‘right’ in the sense it reproduces gravity prediction.)

• Can be justified numerically.
(M.H.-Nishimura-Sekino-Yoneya 2011)

This is the only 
theory in which we can believe in 

any miracle.  
(D.B.Kaplan 2010, private communication.)
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• Dimensional reduction of 4d N=4 (or 10d N=1)

• D0-brane effective action

• Matrix model of M-theory

• gauge/gravity duality →dual to black 0-brane
Simple but can be more interesting than 

AdS5/CFT4 from string theory point of view!



• Matrix quantum mechanics is UV finite. 

• We don’t have to use lattice. Just fix the 
gauge & introduce momentum cutoff!                 
(M.H.-Nishimura-Takeuchi, 2007)

 

No fine tuning!

(4d N=4 is also UV finite, but that relies 
on cancellations of the divergences...)



• Take the static diagonal gauge 

• Add Faddeev-Popov term

• Introduce momentum cutoff Λ



Gravity side



Gauge/gravity duality conjecture
(Maldacena 1997; Itzhaki-Maldacena-Sonnenschein-Yankielowicz 1998)

“(p+1)-d maximally supersymmetric U(N) YM 
and type II superstring on black p-brane 

background are equivalent”

p=3 : AdS5/CFT4

p<3 : nonAdS/nonCFT

large-N, strong coupling  = SUGRA
finite coupling = α’ correction

finite N = gs correction



black p-brane solution 
(Horowitz-Strominger 1991)

SUGRA is valid at

<< 1

>> 1



Difference from AdS/CFT

• When p<3, ‘t Hooft coupling λ is dimensionful. 
It sets the length scale of the theory. 

• ‘t Hooft coupling can be set λ=1, by rescaling 
fields and coordinate. 

Hawking 
temperature

‘strong coupling’
= low temperature



The dictionary

ADM mass Energy density

minimal surface Wilson/Polyakov loop

mass of  field 
excitation scaling dimension

Gravity SYM



ADM mass vs energy density

at large-N & low temperature (strong coupling)



Anagnostopoulos-M.H.-Nishimura-Takeuchi 2007, 
M.H.-Hyakutake-Nishimura-Takeuchi 2008

SUGRA

SUGRA+α’



α’ correction

• deviation from the strong coupling (low  
temperature) corresponds to the α’ 
correction (classical stringy effect). 

• The α' correction to SUGRA starts from 
(α')3 order

• Correction to the BH mass :                          
(α'/R2)3 ～ T1.8

• E/N2=7.41T2.8 - 5.58T4.6

‘prediction’ by SYM simulation



M.H.-Hyakutake-Nishimura-Takeuchi 2008

SUGRA

SUGRA+α’



M.H.-Hyakutake-Nishimura-Takeuchi 2008

slope=4.6

finite cutoff effect

higher order correction 



4-SUSY MQM

Exponential 
   rather than power
→ consistent with the absence of 
     the zero-energy normalizable state

(M.H.-Matsuura-Nishimura-Robles 2010)

E/N2～ exp(-a/T)



Correlation functions
(GKPW relation)

• AdS/CFT (D3-brane) →　GKPW relation                    
(Gubser-Klebanov-Polyakov 1998, Witten 1998)

• Similar relation in D0-brane theory : 

 
“generalized” conformal dimension　             

⇔ mass of field excitations
(Sekino-Yoneya 1999)

calculable 
via SUGRA



                     two-point functions, SU(3), pbc

(M.H.-Nishimuea-Sekino-Yoneya 2009)

finite 
volume 
effect



two-point functions, SU(2), pbc
(M.H.-Nishimura-Sekino-Yoneya 2011)



Next targets:

• 1/N correction to BH mass                     
(M.H.-Hyakutake-Ishiki-Nishimura, in progress)

• Correlators of massive stringy modes            
Sekino-Yoneya’s prediction vs Yin’s prediction                           
(Azeyanagi-M.H.-Nishimura-..., in progress)
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Basic ideas
• Keep a few supercharges exact on lattice.

• Use it (and other discrete symmetries) to 
forbid SUSY breaking radiative corrections.
(Kaplan-Katz-Unsal 2002)

• Only “extended” SUSY can be realized for a 
technical reason. (4, 8 and 16 SUSY)

• Below we consider 16 SUSY theory. 



• Cohen, Kaplan, Katz, Unsal

• Sugino

• Catterall

• Suzuki, Taniguchi

• D’Adda, Kanamori, Kawamoto, Nagata

Several lattice theories exists 
(from around 2002-2005)

Explained below
(conceptually the simplest, 

according to my taste)



Q-exact form





Nilpotency

can be seen manifestly.

Strategy
Realize this SUSY algebra on lattice. 
Then the lattice action has two exact SUSY and SU(2)R. 

But how?

... trial and error!



Sugino, 2003



Absence of fine tuning 
(to all order in perturbation)

• Possible correction from UV is 

up to log(a), where 
tree

• Only p=1,2 are dangerous.
(     is a total derivative)

SU(2)R allows only TrBA and TrXi . 
Exact SUSY kills them.

φ^2 term is forbidden in a similar manner.

(Cohen-)Kaplan-Katz-Unsal, 2002&2003



Does it work at 
nonperturbative level?



4 SUSY model (dimensional redcution of 4d 
N=1; sign-free) has been studied extensively.

• Conservation of supercurrents.

• Comparison with analytic results at small 
volume & large-N behaviors.

• Comparison to Cohen-Kaplan-Katz-Unsal 
model.

All results supports the emergence of the 
correct continuum limit without fine tuning. 

(Suzuki 2007, Kanamori-Suzuki 2008)

(M.H.-Kanamori 2009)

(M.H.-Kanamori 2010)

(16 SUSY: in progress by Buchoff, M.H. and Matsuura)



(Kanamori-Suzuki 2008)

soft SUSY breaking mass (input)

～∂μJμ

Supercurrent conservation 
in the SU(2) Sugino model

(see also Kadoh-Suzuki 2009)

soft SUSY 
breaking 

mass (output)

input=output
(correct continuum limit)



Polyakov loop vs compactification radius
SU(2), periodic b.c. (M.H.-Kanamori 2010)



Application : 
black hole/black string transition

Susskind, Barbon-Kogan-Rabinovici, 
Li-Martinec-Sahakian, 
Aharony-Marsano-Minwalla-Wiseman,…

SYM simulation :  Catterall-Wiseman, 2010



• Consider 2d U(N) SYM on a spatial circle. 
It describes N D1-branes in R1,8×S1, 
winding on S1. 

• T-dual picture :  N D0-branes in R1,8×S1. 

• Wilson line phase = position of D0

uniform distribution
= ‘black string’

localized distribution 
= ‘black hole’



black hole black hole

nonuniform black string uniform black strimg

Fix the mass (or temparature) 
and shrink the compactification radius. 

Then...



Counterpart in SYM
= center symmetry breakdown

• Wilson line phase = position of D0

• Center symmetry 

Uniform = center unbroken  

Non-uniform = center broken



Phase diagram

Figure from Catterall-Wiseman, 2010

(Temperature)-1

radius of 
spatial circle

Low temperature: 
1st order

BH→uniform BS
(Aharony et al, 2004)

High temperature:
2nd + 3rd

BH→nonuniform BS
→uniform BS

(Kawahara et al, 2007)

(Theoretical prediction)



Value of spatial Wilson loop
(‘t Hooft loop)

SU(3) SU(4)

0.6 0.5

0.4



‘t Hooft loop = 0.5

SU(4) gives bigger value of 
‘t Hooft loop than SU(3)

～ BH/BS transition



Summary  



• Monte Carlo is a useful tool to study SYM. 

• Sign problem?  No problem!  

• 1d (non-lattice) : nice & precise results. 

• 2d (lattice) : ongoing. 

• 3d, 4d (fuzzy sphere, lattice) : coming soon.

• For other theories (e.g. SUSY QCD) new 
ideas are needed. 

‘simulation of superstring’ 



THE END


