HIGHER SPIN GAUGE THEORIES AND THEIR CFT DUALS

Yasuaki Hikida (Keio University)

July 24th (2012)@YITP workshop

Thanks for the collaborations to T. Creutzig (Tech. U. Darmstadt) & P. Rønne (University of Cologne)
1. INTRODUCTION

Higher spin gauge theories and their applications to AdS/CFT correspondence
Higher spin gauge theories

- Higher spin gauge fields
 - A totally symmetric spin-s field
 - Yang-Mills ($s=1$), gravity ($s=2$), …

$$\phi_{\mu_1 \cdots \mu_s} \sim \phi_{\mu_1 \cdots \mu_s} + \partial_{(\mu_1} \xi_{\mu_2 \cdots \mu_s)}$$

- Vasiliev theory
 - Non-trivial interacting theories on AdS space
 - Only equations of motion are known

- Toy models of string theory in the tensionless limit
 - Singularity resolution
 - Simplified AdS/CFT correspondence
AdS/CFT correspondence

- Maldacena conjecture ’97

\[\text{Superstring theory on AdS}_{d+1} \leftrightarrow d \text{ dim. conformal field theory (CFT)} \]

- Difficulties to proof the conjecture
 - Strong/weak duality
 - Superstrings on AdS have not been solved

- Simplified AdS/CFT

\[\text{Higher spin gauge theory on AdS}_{d+1} \leftrightarrow d \text{ dim. CFT with higher spin currents} \]
Examples

- $\text{AdS}_4/\text{CFT}_3$ [Klebanov-Polyakov ’02]

 \hspace{2cm} 4d Vasiliev theory \leftrightarrow 3d O(N) vector model

- Evidences
 - Spectrum, RG-flow, correlation functions [Giombi-Yin ’09, ’10]

- $\text{AdS}_3/\text{CFT}_2$ [Gaberdiel-Gopakumar ’10]

 \hspace{2cm} 3d Vasiliev theory \leftrightarrow Large N minimal model

- Evidences
 - Symmetry, partition function, RG-flow, correlation functions
 - A supersymmetric extension [Creutzig-YH-Rønne ’11]
Plan of the talk

1. Introduction
2. Higher spin gauge theories
3. Higher spin holography
4. Conclusion
2. HIGHER SPIN GAUGE THEORIES

Higher spin gravity theories and Chern-Simons formulation
Field equation (free theory)

- A totally symmetric spin-s field

\[\phi_{\mu_1 \ldots \mu_s} \]

- Yang-Mills ($s=1$), Gravity ($s=2$), …

- **Field equations for free theory** [Fronsdal ’78]

\[F_{\mu_1 \ldots \mu_s} \equiv \Box \phi_{\mu_1 \ldots \mu_s} - \partial_{(\mu_1} \partial^\lambda \phi_{\mid \mu_2 \ldots \mu_s)} \lambda + \partial_{\mu_1} \partial_{\mu_2} \phi_{\mu_3 \ldots \mu_s} \lambda^\lambda = 0 \]

- \(F_\mu = \partial^\nu F_{\nu \mu} \) ($s=1$), Linearized Ricci tensor ($s=2$)

- The higher spin gauge symmetry

\[\delta \phi_{\mu_1 \ldots \mu_s} = \partial_{(\mu_1} \xi_{\mu_2 \ldots \mu_s)}, \quad \xi_\lambda^{\lambda}_{\mu_3 \ldots \mu_s} = 0 \]

- Abelian gauge tfm. ($s=1$), Linearized diffeomorphism ($s=2$)
Action (free theory)

- The action for free theory

\[S = \frac{1}{2} \int d^D x \phi^{\mu_1 \ldots \mu_s} \left(F_{\mu_1 \ldots \mu_s} - \frac{1}{2} \eta_{(\mu_1 \mu_2} F_{\mu_3 \ldots \mu_s)\lambda^\lambda} \right) \]

- Uniquely fixed by the gauge symmetry
- Under the double-traceless constraint

\[\phi^{\lambda \sigma}_{\lambda \sigma \mu_5 \ldots \mu_s} = 0 \]

- Free theory on dS or AdS space [Fronsdal '79]

\[\partial_\mu \leftrightarrow \nabla_\mu, \ F_{\mu_1 \ldots \mu_s} \leftrightarrow \hat{F}_{\mu_1 \ldots \mu_s} \]

- Derivatives are replaced by covariant derivative
- The field strength receives corrections due to the curvature
Interacting theory

- Coleman-Mandula theorem
 - Any interacting theory is not possible with higher spin symmetry
 - Assumptions: mass gap, flat space, finitely many dof,…

- Vasiliev theory
 - Interacting theory by escaping assumptions
 - Defined on AdS space
 - With all higher spins (s=2,3,4,…)
 - Only equations of motion are known

- Higher spin AdS$_3$ gravity
 - Spin can be truncated (s=2,3,4,…N)
 - Chern-Simons description is possible
3d Einstein gravity

- **Chern-Simons description** [Achucarro-Townsend ’86, Witten ’88]
 - Action of SL(2) x SL(2) CS theory
 \[
 S = S_{CS}[A] - S_{CS}[\tilde{A}]
 \]
 \[
 S_{CS}[A] = \frac{k_{CS}}{4\pi} \int \text{tr} \left(A \wedge dA + \frac{2}{3} A \wedge A \wedge A \right), \quad k_{CS} = \frac{\ell}{4G}
 \]
 - Gauge transformation
 \[
 \delta A = d\lambda + [A, \lambda], \quad \delta \tilde{A} = d\tilde{\lambda} + [\tilde{A}, \tilde{\lambda}]
 \]
 \[
 A = A_\alpha^\mu J_\alpha dx^\mu, \quad J_\alpha(a = 1, 2, 3) : \text{sl}(2) \text{ generator}
 \]

- **Einstein Gravity with } \Lambda < 0}
 - Dreibein: \(e_\mu^a = \frac{\ell}{2} (A_\mu^a - \tilde{A}_\mu^a) \)
 - Spin connection: \(\omega_{\mu,a,b} = \frac{1}{2} \epsilon_{abc} \omega_{\mu}^c, \quad \omega_{\mu}^c = \frac{1}{2} (A_\mu^c + \tilde{A}_\mu^c) \)
Higher spin AdS$_3$ gravity

- G x G Chern-Simons theory
 - Higher spin gravity can be obtained by replacing SL(2) by G
- Embed gravitational sl(2) into g

\[\text{sl}(N) = \text{sl}(2) \oplus \left(\bigoplus_{s=3}^{N} g^{(s)} \right) \]
\((\text{c.f. } 8 = 3 + 5 \text{ for SL(3)}) \)

Gravitational sl(2) Space-time spin s

- Examples

<table>
<thead>
<tr>
<th>Group G</th>
<th>Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL(N)</td>
<td>Higher spin gravity with s=2,3,…,N</td>
</tr>
<tr>
<td>SL(∞)</td>
<td>Bosonic Vasiliev theory</td>
</tr>
<tr>
<td>SL(N+1</td>
<td>N)</td>
</tr>
<tr>
<td>SL(∞+1</td>
<td>∞)</td>
</tr>
</tbody>
</table>
Asymptotic symmetry

- Chern-Simons theory with boundary
 - DOF exist only at the boundary and described by WZNW model

- Classical asymptotic symmetry
 - Boundary conditions
 - Asymptotically AdS condition has to be assigned for AdS/CFT
 - The condition is equivalent to Drinfeld-Sokolov Hamiltonian reduction
 [Campoleoni, Fredenhagen, Pfenninger, Theisen ’10, ’11]
 - Examples

<table>
<thead>
<tr>
<th>Group G</th>
<th>Symmetry</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>SL(2)</td>
<td>Virasoro</td>
<td>Brown-Henneaux ’86</td>
</tr>
<tr>
<td>SL(N)</td>
<td>W_N</td>
<td>Henneaux-Rey ’10, Campoleni-Fredenhagen-Pfenninger-Theisen ’10, Gaberdiel-Hartman ’11</td>
</tr>
<tr>
<td>SL(N+1</td>
<td>N)</td>
<td>$N=2 W_{N+1}$</td>
</tr>
</tbody>
</table>
Gauge fixings & conditions

• Coordinate system
 • t: time coordinate, (ρ, θ): coordinates of disk
 • Boundary at $\rho \to \infty$

• Solutions to the equations of motion
 • Gauge fixing & boundary condition ($A_\pm = A_\theta \pm A_t$)
 \[A_+ = e^{-\rho V_0^{(2)}} a(t + \theta) e^{\rho V_0^{(2)}}, \quad A_- = 0, \quad A_\rho = e^{-\rho V_0^{(2)}} \partial_\rho e^{\rho V_0^{(2)}} \]

• The condition of asymptotically AdS space
 • Metric should decay properly near the boundary (e.g. Kerr/CFT)
 \[a(t + \theta) = V_1^{(2)} + \sum_{s \geq 2} L_s(t + \theta) V^{(s)}_{-s+1}, \quad V^{(s)}_{n \neq -s+1} = 0 \]

• Same as the constraints for Drinfeld-Sokolov Hamiltonian reduction
 [Campoleoni, Fredenhagen, Pfenninger, Theisen ’10, ’11]
Asymptotic symmetry

- Residual gauge transformation \((t=0) \)
 \[
 \Lambda(\theta) = e^{-\rho V_0^{(2)+}} \lambda(\theta) e^{\rho V_0^{(2)+}}, \quad \delta_\lambda a(\theta) = \partial_\theta \lambda(\theta) + [a(\theta), \lambda(\theta)]
 \]

- \(\lambda(\theta) \) not vanishing at the boundary generates physical symmetry

- Asymptotic symmetry
 - Generator
 \[
 Q(\lambda) = -\frac{k}{2\pi} \int d\theta \text{str} (\lambda(\theta) a(\theta))
 \]
 - Poisson brackets
 \[
 \{Q(\lambda), Q(\eta)\} = -\frac{k}{2\pi} \int d\theta \text{str} (\eta(\theta) \delta_\lambda a(\theta))
 \]

- Symmetry algebra
 - Same as the one from the Hamiltonian reduction
 - Virasoro symmetry with \(c = 3\ell/2G \) as subalgebra
3. HIGHER SPIN HOLOGRAPHY

Proposals of simplified AdS/CFT correspondence and their evidences
AdS$_4$/CFT$_3$

- Klebanov-Polyakov conjecture ’02

4d Vasiliev theory \leftrightarrow 3d O(N) vector model

- A weak/weak duality
- State counting

<table>
<thead>
<tr>
<th></th>
<th>Gauge invariant operator</th>
<th>Bulk fields</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vector-type model</td>
<td>$h^a \partial_{(\mu_1} \cdots \partial_{\mu_s)} h^a$</td>
<td>One higher spin field $\phi_{\mu_1 \cdots \mu_s}$</td>
</tr>
<tr>
<td>Matrix-type model</td>
<td>$\text{tr}[\Phi \nabla^{l_1} \Phi \nabla^{l_2} \cdots \Phi]$</td>
<td>Many string states with fixed total spin</td>
</tr>
</tbody>
</table>
Evidences

- RG flow by a relevant operator $\mathcal{O} = \frac{\lambda}{2N} (h^a h^a)^2$

<table>
<thead>
<tr>
<th>Flow</th>
<th>$O(N)$ model</th>
<th>B.C. for bulk scalar</th>
</tr>
</thead>
<tbody>
<tr>
<td>UV</td>
<td>Free theory ($\lambda = 0$)</td>
<td>Dirichlet (usual)</td>
</tr>
<tr>
<td>IR</td>
<td>Critical theory ($\lambda = \lambda^*$)</td>
<td>Neumann (alternative)</td>
</tr>
</tbody>
</table>

- Correlation functions
 - Some boundary correlation functions are computed explicitly from the bulk side [Giombi-Yin ’09, ’10]
 - A higher spin symmetry is enough to fix the CFT correlation functions [Maldacena-Zhiboedov ’12, ’12]
AdS$_3$/CFT$_2$

- Gaberdiel-Gopakumar conjecture ’10

3d Vasiliev theory ↔ Large N minimal model

- Gravity side
 - A bosonic truncation of higher spin supergravity by Prokushkin-Vasiliev ’98
 - It includes massive scalar fields

- CFT side
 - Minimal model with respect to W_N-algebra (higher spin extension of Virasoro algebra)
 - Exactly solvable in principle
Minimal model holography

Higher spin gravity

- Massless sector
 - Higher spin gauge fields \((s = 2, 3, \ldots)\)
 - Asymptotic \(W_\infty\) symmetry

- Massive sector
 - Complex scalars

\[M^2 = -1 + \lambda^2 \]

Large \(N\) minimal model

- \(W_N\) minimal model
 - Coset description
 \[
 \frac{SU(N)_k \otimes SU(N)_1}{SU(N)_{k+1}}
 \]

- 't Hooft limit
 - Large \(N\) limit
 \[k, N \to \infty \]
 - Fix the ratio
 \[0 < \lambda = \frac{N}{k+N} < 1 \]
Evidences

• Symmetry
 • Asymptotic symmetry of the gravity theory is W algebra, while the dual CFT is W_N minimal model

• RG flow
 • RG flow pattern is reproduced from the bulk

• Spectrum
 • One loop partition functions of the dual theories match [Gaberdiel-Gopakumar-Hartman-Raju ’11]

• Interactions
 • Some three point functions are studied [Chang-Yin ’11, Ammon-Kraus-Perlmutter ’11]
Generalization

- **A truncation version** [Ahn ’11, Gaberdiel-Vollenweider ’11]
 - Gravity side: Gauge fields with only spins $s=2, 4, 6, \ldots$
 - CFT side: WD_N minimal model
 \[
 \frac{\text{SO}(N)_k \otimes \text{SO}(N)_1}{\text{SO}(N)_{k+1}}
 \]

- **A supersymmetric version** [Creutzig-YH-Rønne ’11]
 - Gravity side: Full sector of higher spin supergravity by Prokushkin-Vasiliev ’98
 - CFT side: $N=(2,2)$ CPN Kazama-Suzuki model
 \[
 \frac{\text{SU}(N+1)_k \otimes \text{SO}(2N)_1}{\text{SU}(N)_{k+1} \otimes \text{U}(1)^N(N+1)(k+N+1)}
 \]
Our proposal

Prokushkin-Vasiliev theory

- Higher spin gauge fields
 - Bosons ($s = 1,2,\ldots$) and fermions ($s = 3/2, 5/2,\ldots$)
 - $\mathcal{N}=(2,2)$ \mathcal{W}_∞ symmetry near the boundary of AdS$_3$

- Massive matter fields
 - Complex scalars
 \[(M_B^\pm)^2 = -1 + \frac{1}{4}(1 \mp 1 - 2\lambda)^2 \]
 - Dirac spin 1/2 spinors
 \[(M_F^\pm)^2 = \left(\frac{1}{2} - \lambda\right)^2 \]

CPN Kazama-Suzuki model

- $\mathcal{N}=(2,2)$ \mathcal{W}_N minimal model
 - Coset description
 \[\frac{\text{SU}(N+1)_k \otimes \text{SO}(2N)}{\text{SU}(N)_{k+1} \otimes \text{U}(1)^N(N+1)(k+N+1)} \]

- ’t Hooft limit
 - Large N limit
 \[k, N \to \infty \]
 - Fix the ratio
 \[0 < \lambda = \frac{N}{k+N} < 1 \]
Evidences

• Symmetry
 • Asymptotic symmetry is $N=(2,2)$ W algebra [Creutzig-YH-Rønne ’11, Henneaux-Gómez-Park-Rey ’12, Hanaki-Peng ’12]
 • The Kazama-Suzuki model has the same symmetry [Ito ’91]

• Spectrum
 • One-loop partition function is obtained from gravity one-loop determinants [Creutzig-YH-Rønne ’11]
 • One loop partition function is computed at the ’t Hooft limit and the agreement is found with the gravity result [Candu-Gaberdiel ’12]

• Interactions
 • Three point functions with one higher spin current are studied [Creutzig-YH-Rønne, to appear]
Agreement of the spectrum

• Gravity partition function
 • Bosonic sector
 • Massive scalars [Giombi-Maloney-Yin ’08, David-Gaberdiel-Gopakumar ’09]
 • Bosonic higher spin [Gaberdiel-Gopakumar-Saha ’10]
 • Fermionic sector
 • Massive fermions, fermionic higher spin [Creutzig-YH-Rønne ’11]
• CFT partition function at the ’t Hooft limit
 • It is obtained by the sum of characters over all states and it was found to reproduce the gravity results
 \[Z^{N,k}(q) = \sum_{\Lambda} |b^{N,k}_{\Lambda}(q)|^2 \]
 • Bosonic case [Gaberdiel-Gopakumar-Hartman-Raju ’11]
 • Supersymmetric case [Candu-Gaberdiel ’12]
Partition function at 1-loop level

• Total contribution
 • Higher spin sector + Matter sector
 \[Z^{\text{Bulk}} = Z^{\text{HS}} Z^{\text{matter}} \]
 • Higher spin sector
 • Two series of bosons and fermions
 \[Z^{\text{HS}} = \prod_{s=2}^{\infty} Z_B^{(s)} (Z_F^{(s-1)})^2 Z_B^{(s-1)} \]
 \[Z_B^{(s)} = \prod_{n=s}^{\infty} |1 - q^n|^{-2}, \quad Z_F^{(s)} = \prod_{n=s}^{\infty} |1 + q^{n+\frac{1}{2}}|^2 \]
• Matter part sector
 • 4 massive complex scalars and 4 massive Dirac fermions
 \[Z^{\text{matter}} = Z^{\frac{1}{2}}_{\text{susy}} Z^{\frac{1}{2}}_{\text{susy}}, \quad Z^{h}_{\text{susy}} = Z^{h}_{\text{scalar}} (Z^{h+\frac{1}{2}}_{\text{spinor}})^2 Z^{h+\frac{1}{2}}_{\text{scalar}} \]
 \[Z^{h}_{\text{scalar}} = \prod_{l,l'=0}^{\infty} (1 - q^{h+l} q^{h+l'})^{-2} \]
 \[Z^{h}_{\text{spinor}} = \prod_{l,l'=0}^{\infty} (1 + q^{h+l} q^{h-\frac{1}{2}+l'}) (1 + q^{h-\frac{1}{2}+l} q^{h+l'}) \]
Prokushkin-Vasiliev theory

• Master fields
 • W_μ: gauge fields, B: matter fields, S_α: auxiliary fields
 • Parameters: $z_\alpha, y_\alpha, \psi_1, \psi_2, k, \rho$
 \begin{align*}
 k^2 = \rho^2 &= 1, \quad \{k, \rho\} = \{k, y_\alpha\} = \{k, z_\alpha\} = 0, \quad [\rho, y_\alpha] = [\rho, z_\alpha] = 0
 \end{align*}

• Field equations
 \begin{align*}
 dW &= W \ast \wedge W, \quad dB = W \ast B - B \ast W, \ldots
 \end{align*}

• Gauge transformations
 \begin{align*}
 \delta W &= d\varepsilon - W \ast \varepsilon + \varepsilon \ast W, \quad \delta B = \varepsilon \ast B - B \ast \varepsilon, \ldots
 \end{align*}

• Vacuum solutions & perturbations around $B = \nu$
 \begin{align*}
 dA + A \ast \wedge A &= 0, \quad dC + A \ast C - C \ast \bar{A} = 0
 \end{align*}

• Chern-Simons gauge theory on a large N limit of SL($N+1|N$)
• On AdS matter fields with mass depends on ν
Boundary 3-pt functions

• Scalar field in the bulk ↔ Scalar operator at the boundary
 \(\phi_{\lambda}, \; m^2 = -1 + \lambda^2 \quad \mathcal{O}_B^h, \; h = \frac{1+\lambda}{2} \)

• Boundary 3-pt functions from the bulk theory [Chang-Yin ’11, Ammon-Kraus-Perlmutter ’11]

\[
\left\langle \mathcal{O}_B^h(z_1) \tilde{\mathcal{O}}_B^h(z_2) J^{(s)}(z_3) \right\rangle = N_s(h) \left(\frac{z_{12}}{z_{13} z_{23}} \right)^s \left\langle \mathcal{O}_B^h(z_1) \tilde{\mathcal{O}}_B^h(z_2) \right\rangle
\]

\[
N_s(h) = \frac{(-1)^{s-1} \Gamma(s)^2 \Gamma(s - 1 + 2h)}{2\pi \Gamma(2s - 1) \Gamma(2h)}
\]

• Comparison to the boundary CFT
 • Direct computation for \(s=3 \) (for \(s=4 \) [Ahn ’11])
 • Consistence to the large \(N \) limit of \(W_N \) for \(s=4,5,.. \)

• Analysis is extended to the supersymmetric case
 • 3-pt functions with fermionic operator [Creutzig-YH-Rønne, to apper]
4. CONCLUSION

Summary and other related works
Summary

• Higher spin gauge theories
 • Gravity theory with spin 2 gauge field can be extended to theory with spin $s > 2$ gauge fields.
 • Vasiliev develops higher spin gravity theories on AdS with non-trivial interactions, though only equations of motion are known.
 • Chern-Simons formulation is possible in 3 dimensions.

• Higher spin holography
 • 4d Vasiliev theory is dual to 3d O(N) vector model
 • 3d Vasiliev theory is dual to 2d W_N minimal model
 • Lots of evidences are already given
 • Symmetry, RG-flow, spectrum, correlation functions
Other related works (I)

- **Resolution of black hole singularity** [Ammon-Gutperle-Kraus-Perlmutter ’11,…]
 - The higher spin gravity has a large gauge symmetry. The notion of singularity, horizon,… is not gauge invariant
 - Generalized BTZ black hole can be changed into a warm hole solution by gauge transformation.

- **1/N corrections** [Castro, Lepage-Jutier, Maloney ’10,…]
 - Dual CFT is defined at the finite N, and the finite N effects should be related to the quantum effects of Vasiliev theory
 - Missing states in the CFT correspond to geometries with conical deficits
Other related works (II)

 - One parameter family of correspondence can be considered in the ’t Hooft limit with large N,k
 - Dual to a generalization of Vasiliev theory
 - Related to ABJ theory with $U(N)_k \times U(M)_{-k}$ gauge symmetry. Take large N but finite M. Dual to superstring on $\text{AdS}_4 \times \text{CP}^3$