Refined Holographic Entanglement
Entropy for the AdS Solitons and
AdS black Holes
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Entanglement Entropy

We divide the total system into two parts; region a and region b.

Entanglemet Entropy Sa Is defined as von Neumann entropy
with the reduced density matrix pa which is obtained by
tracing out area “b” from the total system density matrix ptot.

Sa=-Tra (pa Log pa) pa=Trbptot L, = ‘ lP><lP‘

EE counts the number of correlations between region a and

region b
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Holographic Entanglement Entropy

Holographic Entanglement Entropy (Ryu and Takayanagi '06)
Sa= A/(4GN)

A Is the area of the minimal surface in the bulk gravity
background whose boundary is a.

minimal surface A
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Entanglement Entropy

UV-cutoff independent entanglement entropy Suv-ind
Suv-ind In (2+1)-dimensional gapped system.

Suv-ind In (2+1)-dimensional finite temperature theory.

Summary



In (2+1)-dimensional CFT , the entanglement entropy S has the
following UV-divergent structure,
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where ¢ Is constant and invariant under redefining UV cutoff ¢

A € — ff.UF(1+ff.1F+ )

Thus c is the universal part of the entanglement entropy.

c Is also obtained by defining the following UV-cutoff
Independent entanglement entropy
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In general, entanglement entropy S in (2+1) Lorentz invariant
theory, has the following divergent structure and its UV-
Independent term Suv-ind depends on the size of the region R.

S A~ g — ¢ (R) +O(e) SUV-ind = (L’J;? — 1) S =C(R)

Suv-ind IS considered to count the degree of freedom at the scale
R and shown that it monotonically decreases as R becomes
large.

(Casini and Huerta ‘12) (Klebanov, Nishioka, Pufu, and Safdi ‘12 ) (Liu and Mezei’12)

Example : Free massive scalar theory
(arXiv 1202.2070, Liu and Mezei) Suv-ing




AdSs-Soliton

We consider entanglement entropy in gapped (2+1)-
dimensional theory which is dual to AdSs-soliton space-time.
L [ dz2 o
ds* = ;2“ (f(z) + f(2)d6? — dt* + dr* + rzdﬂ) f(Z):l _ (%)4
r is a radial direction on the boundary and Lorentz symmetry is
broken because of compactifying 6 direction.

The area of minimal surface A (e S) and the equation of

motion for r(z) are given by
AdSs-Soliton

/\/m f dw _ \/Tfr?
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There are two types of solutions; Disk topology solutions (blue
line) and Cylinder topology solutions (red line)
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Disk type solution

Solution r(z) is expanded around UV (z~0) region as
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r(z) =R 4R+a4(R)z too7 og(pz)+

where u Is arbitrary number. a4(R) will be determined by solving
full equation of motion numerically.



Instead of calculating the minimal surface A itself, we can
calculate dA/dR by Hamilton-Jacobi method with UV-cutoff

(z=¢) by following formula. (Liuand Mezei'12 )

d A dz,m, dr(€) dr(e€)
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where z=zm Is the maximal value of z

The first Hamiltonian term IS zero In this case because of the
boundary condition at z=zm as follows.
dzﬂz. dZO

For disk topolo _ _
POIOgY dR dR 0

For cylinder topology  7(2m) =0 s.t. H(z,) =0



By using the formula of the previous page and UV expansion of
the solution r(z) , we can obtain

dA 1 1 g e 5
iR~ 22 3R 8V T g

a4(R) will be obtained by solving the full equation of motions.

—4Ray(R) + O(e)

By redefining UV cutoff eas ¢ — ape(l + age+---)

, R-dependent finite terms are shifted.



UV divergent structure is different from that of previous cases.
Thus, we have to consider the another UV-cutoff independent

entanglement entropy Suv-ind .

We can define the following UV-cutoff independent entanglement
entropy.
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SUV—ind = (R

Then, we can obtain the RG-flow of Suv-ind as

dS[ V —111(1 d d dS
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Figure shows the numerical result of RG-flow dSuv-ind/dR.

In small R region (disk solutions), g
dSuv-ind/dR Is negative and Suv-ind ,;
decreases monotonically. 5t
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In large R region, (cylinder ! 2 ; i
solutions), dSuv-ind/dR N
becomes positive and goes to sl
zero as R becomes larger. N
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The positivity of dSuv-ind/dR In the large R region (red line) is still
not clear.



AdS4 Black Hole

We consider the AdS4 Dblack hole which is dual to the (2+1)-
dimensional field theory with finite temperature T and
chemical potential y (Hartnoll '11).

L3 gs dz* |
ds* = = (—j’(z)dt2+, re de@2>
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The area of minimal surface Is given by

— / \/det Jind = //Mm az _\/f




dA/dR is obtained in the same way as

dA 1 ,

where asz(R) is given by UV-expansion of r(z)
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() = B — 2 g (R)S o
r(2) = R - o= + as(R) +O(2)

Then, the RG-flow of UV-cutoff independent entanglement
entropy is given by

452 BH

Stro_: 1A o




dSuv-ind/dR Is always positive, implying that more and more
states are thermally excited as we go to higher temperature
regime (large R region).

dSuv_ma/dR
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In large R region, Suv-ind/dR becomes linear and Suv-ind obeys
the volume law in large R region like the volume law of the
thermal entropy.



Summary

We calculate the entanglement entropy in (2+1)-dimensional
gapped theory by using AdSs-solitons and define the UV-
cutoff independent entanglement entropy Suv-ind.

We calculate the RG-flow (dSuv-ind/dR) and found that
dSuv-ind/dR <0 In small R region (disk solutions),
dSuv-ind/dR >0 at large R region (cylinder solutions).
At very large R region, dSuv-ind/dR —0.

The reason of the positivity of dSuv-ind/dR In large R region is
not clear.

We also calculate Suv-ind In (2+1)-dimensional finite
temperature theory by using AdS4-Black hole background
and found that Suv-ind obeys the volume law at large R-
region.



