New geometric interpretation of D-branes and DBI action

Shuhei Sasa (Tohoku University)

In collaboration with Tsuguhiko Asakawa, Satoshi Watamura Based on arXiv:1206.6964

@YITP workshop July 26, 2012

Introduction

[Fradkin, Tseytlin '85] [Abouelsaood, Callan, Nappi, Yost '87]

[Callan, Lovelace, Nappi, Yost '88]

Dirac-Born-Infeld (DBI) action:

the low-energy effective theory of D-brane

$$S_{\text{DBI}} = \int_{\varphi_{\Phi}(\Sigma)} \sqrt{\det(\varphi_{\Phi}^*(g+B) - F)_{ab}} dx^0 \wedge \dots \wedge dx^p$$

We proposed that

DBI action = Generalization of Nambu-Goto action in the framework of generalized geometry

It is known that

Scalar fields describing transverse displacements

NG bosons for broken translational symmetries

Broken symmetries are non-linearly realized in NG action.

[Low, Manohar '02]

We show that

- The gauge field and the scalar fields can be treated on equal footing in the framework of generalized geometry.
- As scalar fields, the gauge field are interpreted as NG boson for broken (constant) B-field gauge transformations.
- The DBI action is invariant under non-linearly realized symmetry for all types of diffeomorphisms and B-field gauge transformations over the target space.

Outline

Introduction

- 1. What is generalized geometry
- 2. D-brane (Dirac structure)
- 3. Adding a metric and a B-field (generalized metric str.)
- 4. Transformation law
- Invariance of the DBI action

Summary

1. What is generalized geometry

What is generalized geometry?

[Courant '90] [Hitchin '03]

Generalized geometry is extension of (usual) differential geometry.

M: D-dimensional manifold (the target space)

Differential geometry

TM

Diffeomorphism

Generalized Geometry

$$\mathbb{T}M = TM \oplus T^*M$$

Diff. and B-field gauge transf.

Lie derivative:

$$\mathcal{L}_{\underbrace{u+\xi}}(v+\eta) = \mathcal{L}_{u}(v+\eta) - \underbrace{\imath_{v}d\xi}_{\text{Diffeomorphism}}$$
 B-field gauge transf.

2. D-brane

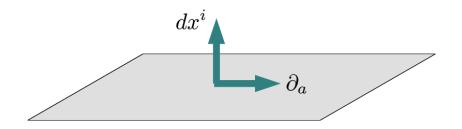
(Dirac structure)

Dp-brane:

(Dirac structure [Courant '90])

A Dp-brane without fluctuations (Φ,A) can be characterized as a subbundle

$$L = \{v^{a}(x)\partial_{a} + \xi_{i}(x)dx^{i}\}$$
$$= \Delta \oplus \operatorname{Ann}(\Delta) \subset \mathbb{T}M$$



Examples of D-branes:

TM: D9-brane

 $T^*M: \mathsf{D}(\text{-1})\text{-brane}$

(M:10 dim manifold)

Dp-brane with fluctuations

Acting a diffeomorphism and a B-field gauge transformation on $\,L\,$, a D-brane with fluctuations can be represented as a subbundle

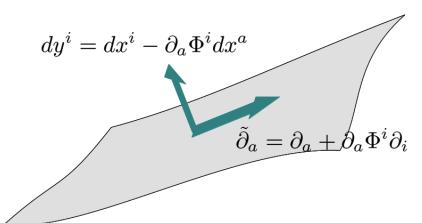
$$L_{\mathcal{F}} = e^{-\mathcal{L}_{\Phi+A}} L \subset \mathbb{T}M$$

$$V_L + \mathcal{F}(V_L) = v^a(x)(\partial_a + \partial_a \Phi^i \partial_i + F_{ab} dx^b) + \xi_i(x)(dx^i - \partial_a \Phi^i dx^a) \in \Gamma(L_{\mathcal{F}})$$

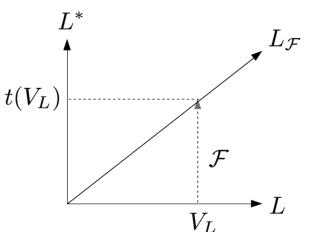
where

$$\mathcal{F} = \frac{1}{2} F_{ab} dx^a \wedge dx^b + \partial_a \Phi^i dx^a \wedge \partial_i$$
: a generalized field strength

Image of $L_{\mathcal{F}}$,



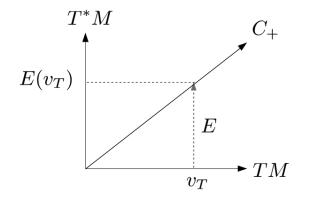
Graph of a map $\mathcal{F}:L o L^*$,

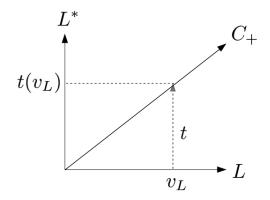


 Adding a metric and a B-field (generalized metric structure)

Generalized metric

Generalized metric is given by a subbundle $C_+ \subset \mathbb{T}M$ of which sections are described as a graph of $E = g + B : TM \to T^*M$ or as a graph $t: L \to L^*$,





Since these graphs represent the same subbundle, we find the relation

$$t^{ij} = E^{ij},$$
 $t_a^{\ j} = -E_{ak}E^{kj},$ $t_b^{\ i} = E^{ik}E_{kb},$ $t_{ab} = E_{ab} - E_{ak}E^{kl}E_{lb}$

These relations are similar to the Buscher rule since T-duality exchanges vector fields and 1-forms.

Another definition of the generalized metric

We introduce the operation $G: \mathbb{T}M o \mathbb{T}M$ given by

$$G = \begin{pmatrix} -Bg^{-1} & g^{-1} \\ g - Bg^{-1}B & g^{-1}B \end{pmatrix}$$
 [Gualtieri '03]

Then $C_{\pm} = \operatorname{Ker}(1 \mp G)$

1. Restriction of G to $L_{\mathcal{F}}$ gives the induced metric on $L_{\mathcal{F}}$:

$$s_{\mathcal{F}} = s - (a - \mathcal{F})s^{-1}(a - \mathcal{F}) \in \Gamma(L_{\mathcal{F}}^* \otimes L_{\mathcal{F}}^*)$$

2. Restriction of G to C_+ gives a bulk metric:

$$g \in \Gamma(T^*M \otimes T^*M)$$

s : symmetric part of t anti-symmetric part of t

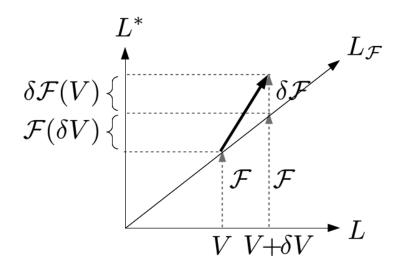
4. Transformation law

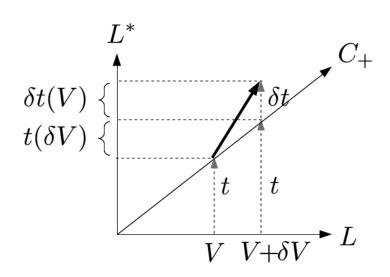
Transformation law

Consider an infinitesimal transformation of a diffeomorphism and a B-field gauge transformation generated by

$$\epsilon = \epsilon_{\parallel} + \epsilon_{\perp} = \epsilon^{a} \partial_{a} + \epsilon^{i} \partial_{i}$$
$$\Lambda = \Lambda_{\parallel} + \Lambda_{\perp} = \Lambda_{a} dx^{a} + \Lambda_{i} dx^{i}$$

The transformation law for the tensor $\mathcal{F} \in \Gamma(L^* \otimes L^*)$ and $t \in \Gamma(L^* \otimes L^*)$ can be found as the transformation of the subbundles $L_{\mathcal{F}}$ and C_+ .





Transformation law:

$$\delta \mathcal{F}_{ab} = -\epsilon^{M} \partial_{M} \mathcal{F}_{ab} - \partial_{a} \epsilon^{c} \mathcal{F}_{cb} - \mathcal{F}_{ac} \partial_{b} \epsilon^{c} - \partial_{[a} \Lambda_{k]} \mathcal{F}_{b}^{k} + \mathcal{F}_{a}^{k} \partial_{[k} \Lambda_{b]}$$

$$- \mathcal{F}_{a}^{k} \partial_{k} \epsilon^{c} \mathcal{F}_{cb} + \mathcal{F}_{ac} \partial_{k} \epsilon^{c} \mathcal{F}_{b}^{k} - \mathcal{F}_{a}^{k} \partial_{[k} \Lambda_{l]} \mathcal{F}_{b}^{l} + \partial_{[a} \Lambda_{b]}$$

$$\delta \mathcal{F}_{a}^{j} = -\delta \mathcal{F}_{a}^{j} = -\epsilon^{M} \partial_{M} \mathcal{F}_{a}^{j} - \partial_{a} \epsilon^{c} \mathcal{F}_{c}^{j} + \mathcal{F}_{a}^{k} \partial_{k} \epsilon^{j} - \mathcal{F}_{a}^{k} \partial_{k} \epsilon^{c} \mathcal{F}_{c}^{j} + \partial_{a} \epsilon^{j}$$

$$\begin{split} \delta t_{ab} &= -\epsilon^M \partial_M t_{ab} - \partial_a \epsilon^c t_{cb} - t_{ac} \partial_b \epsilon^c + \partial_{[k} \Lambda_{a]} t^k_{\ b} + t_a^{\ k} \partial_{[k} \Lambda_{b]} \\ &- t_a^{\ k} \partial_k \epsilon^c t_{cb} + t_{ac} \partial_k \epsilon^c t^k_{\ b} - t_a^{\ k} \partial_{[k} \Lambda_{l]} t^l_{\ b} + \partial_{[a} \Lambda_{b]} \\ \delta t_a^{\ j} &= -\epsilon^M \partial_M t_a^{\ j} - \partial_a \epsilon^c t_c^{\ j} + t_a^{\ k} \partial_k \epsilon^j + \partial_{[k} \Lambda_{a]} t^{kj} \\ &- t_a^{\ k} \partial_k \epsilon^c t_c^{\ j} + t_{ac} \partial_k \epsilon^c t^{kj} - t_a^{\ k} \partial_{[k} \Lambda_{l]} t^{lj} + \partial_a \epsilon^j \\ \delta t^i_{\ b} &= -\epsilon^M \partial_M t^i_{\ b} + \partial_k \epsilon^i t^k_{\ b} - t^i_{\ c} \partial_b \epsilon^c + t^{ik} \partial_{[k} \Lambda_{b]} \\ &- t^{ik} \partial_k \epsilon^c t_{cb} + t^i_{\ c} \partial_k \epsilon^c t^k_{\ b} - t^{ik} \partial_{[k} \Lambda_{l]} t^l_{\ b} - \partial_b \epsilon^i \\ \delta t^{ij} &= -\epsilon^M \partial_M t^{ij} + \partial_k \epsilon^i t^{kj} + t^{ik} \partial_k \epsilon^j \\ &- t^{ik} \partial_k \epsilon^c t_c^{\ j} + t^i_{\ c} \partial_k \epsilon^c t^{kj} - t^{ik} \partial_{[k} \Lambda_{l]} t^{lj} \end{split}$$

$$\delta \mathcal{F}_{ab} = -\epsilon^{M} \partial_{M} \mathcal{F}_{ab} - \partial_{a} \epsilon^{c} \mathcal{F}_{cb} - \mathcal{F}_{ac} \partial_{b} \epsilon^{c} - \partial_{[a} \Lambda_{k]} \mathcal{F}_{b}^{k} + \mathcal{F}_{a}^{k} \partial_{[k} \Lambda_{b]}$$
$$- \mathcal{F}_{a}^{k} \partial_{k} \epsilon^{c} \mathcal{F}_{cb} + \mathcal{F}_{ac} \partial_{k} \epsilon^{c} \mathcal{F}_{b}^{k} - \mathcal{F}_{a}^{k} \partial_{[k} \Lambda_{l]} \mathcal{F}_{b}^{l} + \partial_{[a} \Lambda_{b]}$$
$$\delta \mathcal{F}_{a}^{j} = -\delta \mathcal{F}_{a}^{j} = -\epsilon^{M} \partial_{M} \mathcal{F}_{a}^{j} - \partial_{a} \epsilon^{c} \mathcal{F}_{c}^{j} + \mathcal{F}_{a}^{k} \partial_{k} \epsilon^{j} - \mathcal{F}_{a}^{k} \partial_{k} \epsilon^{c} \mathcal{F}_{c}^{j} + \partial_{a} \epsilon^{j}$$

This transformation law can be rewritten as

$$\delta \mathcal{F}_{ab} = \tilde{\partial}_{[a} \delta A_{b]} - \delta \Phi^{k} \partial_{k} F_{ab}$$
$$\delta \mathcal{F}_{a}^{j} = -\delta \mathcal{F}_{a}^{j} = \tilde{\partial}_{a} \delta \Phi^{j}$$

We can read the non-linear transformation law:

$$\delta A_a = \begin{bmatrix} \Lambda_a - \epsilon^c F_{ca} + \Lambda_k \partial_a \Phi^k \\ \delta \Phi^i = \epsilon^i - \epsilon^c \partial_c \Phi^i \end{bmatrix}$$

 (Φ^i,A_a) can be interpreted as NG bosons for $\epsilon^i={
m const.}$ and $\Lambda_a={
m const.}$

4. Invariance of the DBI action

In this section, we prove invariance of the DBI action under the full diffeomorphisms and B-field gauge transformations on the target space.

Firstly we define the DBI action as an integral over the target space ${\cal M}$ as

$$S_{\text{DBI}} = \int_{M} \mathcal{L}_{\text{DBI}} \, \delta^{(D-p-1)}(x^{i} - \Phi^{i}(x^{a})) \, dx^{0} \wedge \dots \wedge dx^{D-1}$$
$$\mathcal{L}_{\text{DBI}} = \det^{\frac{1}{4}} g \det^{\frac{1}{4}} s_{\mathcal{F}}$$

This action can be rewritten as a well-known form

$$S_{\text{DBI}} = \int_{\Sigma} \sqrt{\det(\varphi_{\Phi}^*(g+B) - F)_{ab}} \ dx^0 \wedge \cdots \wedge dx^p$$

The proof of this relation are found in our paper.

Transformation rule:

$$\begin{cases} \delta \sqrt{\det s_{\mathcal{F}}} = -\epsilon^{M} \partial_{M} \sqrt{\det s_{\mathcal{F}}} + \sqrt{\det s_{\mathcal{F}}} \left\{ -\partial_{c} \epsilon^{c} + \partial_{k} \epsilon^{k} - 2\mathcal{F}_{c}{}^{k} \partial_{k} \epsilon^{c} \right\} \\ \delta \sqrt{\det g} = -\epsilon^{M} \partial_{M} \sqrt{\det g} + \sqrt{\det g} \left\{ -\partial_{M} \epsilon^{M} \right\} \end{cases}$$

$$\delta \mathcal{L}_{\text{DBI}} = -\epsilon^M \partial_M \mathcal{L}_{\text{DBI}} - (\partial_c \epsilon^c + \partial_c \Phi^k \partial_k \epsilon^c) \mathcal{L}_{\text{DBI}}.$$

The delta function is transformed as a density to

$$\delta[\delta^{(D-p-1)}(x^i - \Phi^i)]$$

$$= -\epsilon^M \partial_M [\delta^{(D-p-1)}(x^i - \Phi^i)] - (\partial_k \epsilon^k - \partial_k \epsilon^c \partial_c \Phi^k) \delta^{(D-p-1)}(x^i - \Phi^i).$$

Combining these transformation laws, we get

$$\delta \left[\mathcal{L}_{\text{DBI}} \, \delta^{(D-p-1)} (x^i - \Phi^i) \right] = -\partial_M \left[\epsilon^M \mathcal{L}_{\text{DBI}} \, \delta^{(D-p-1)} (x^i - \Phi^i) \right]$$

total derivative

Interpretation as determinant bundles

$$\sqrt{\det g} \, dx^0 \wedge \dots \wedge dx^{D-1} \in \Gamma(\det(T^*M))$$

$$\sqrt{\det s_{\mathcal{F}}} \, dx^0 \wedge \dots \wedge dx^p \wedge \partial_{p+1} \wedge \dots \wedge \partial_{D-1} \in \Gamma(\det(L^*))$$

The determinant bundle of each structures are decomposed as

$$\det(T^*M) = \det(\Delta^*) \otimes \det(\operatorname{Ann}(\Delta)),$$

$$\det(L^*) = \det(\Delta^*) \otimes \det(\operatorname{Ann}^*(\Delta)) = \det(\Delta^*) \otimes \det^{-1}(\operatorname{Ann}(\Delta))$$

Then

$$\det(T^*M) \otimes \det(L^*) = \det^2(\Delta^*) \otimes \det(\operatorname{Ann}(\Delta)) \otimes \det^{-1}(\operatorname{Ann}(\Delta))$$

Therefore the DBI Lagrangian can be characterized as a volume form over a D-brane world-volume as

$$\mathcal{L}_{\mathrm{DBI}}dx^0 \wedge \cdots \wedge dx^p \in \Gamma(\det \Delta)$$

Summary

- D-branes are described as a subbundle (Dirac structure), where scalar fields and a gauge field can be treated on an equal footing.
- As the scalar fields, the gauge fields are interpreted as NG boson for broken B-field gauge transformations.
- We show that the DBI action is invariant under non-linearly realized symmetry.

<u>Open questions</u>

How can we extend these arguments to the following cases?

- Non-Abelian gauge theory
- Ramond-Ramond coupling (especially for A-roof genus)
- The relation with non-geometric fluxes
- M2, M5-brane