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Space-tlme thermodynamics EE fFE with B B and 2 T
with a general null hypersurface (KEK/HATFK)  skengo@postkek jn

Understanding why the unnatural assumptions were necessary
INn the thermodynamic derivation of the Einstein eq. by Jacobson.

== S0me possibilities of the interpretation of the e.0.m. of general gravity theory on a general null hypersurface.
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Suppose X is “uniformly accelerated observer”
outside the local causal horizon’H.

Especially, In the Einstein gravity
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Jacobson “derived” the Einstein eq. K
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e The missing terms in Jacobson’s derivation are
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Instantaneous equilibrium condition 0 |p = 0 = Total energy between Obs. X and bifurcation surface P ?
(under consideration)
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this term does not contribute to integration over ’H .
Why observersX — behind the horizonH _ ? e TO reach a interpretation of the E_instein eg. on Its own,
Difficult of the generalization to general gravity theories. we must deal with such a term directly.

L It's possible to vanish by the special choice of Obs. X .

We can evaluate each terms in (xx) for “non-uniformly accelerated” observers X as follows:
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If we take the observers with ¢ — X0 (X, y) + O(\"?), ) - 1,
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Modified Define the normal vector 5 and a tangent vector X A=
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« Some justification of the modified temperature and entropy Is needed. There is not a natural”
normalization of X H.
e This method using Noether charge can be applied to general gravity theories. which is not a Killing vector. N

But it's unlikely that ¢, ® becomes a familiar form of entropy production.



