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1 Introduction

<> We previously considerd a simple SUSY matrix model: [Kuroki-F.S. 2009]

1 J—
S = Ntr | B* +iB(¢* — p*) + %(d¢ + ¥9)) ,
where
B, ¢ : Bosonic N |
wﬂﬁ : Fermionic NN X NN hermitian matrices.
e SUSY

Qo = ¢9_ QY _: 0, Q@E = —B, QB =0,
Q¢ — _'Qb’ Q"p = 0, Q"p — _ti QB = 0.
= Q? = Q? = 0 (nilpotent)

112 2)2
e Double-well scalar potential : 5 (¢* — pu*)



<> (SUSY preserving) large-IN solution with filling fraction (v, v_):
[Kuroki-F.S. 2009]

pla) = tr (e — &)

Txy(x? — a?)(b? — x?) (a <z <b)
= x| (2?2 — a?)(b® — x?) (-b<x< —a)

with a = /u? — 2, b = /pu? + 2.

e Exists for u? > 2.
e a and b are independent of v4!

e SUSY is preserved from
(large-IN free energy) = O, <]btr B")=0(n=1,2,---).

e The SUSY minima are infinitely degenerate, parametrized by (v, v_).
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Figure 1: Double-well scalar potential (upper panel) and the eigenvalue distribution for v, > v_ (lower panel).



<> In this talk,

e we compute correlation functions of this matrix model.
(— Logarithmic critical behavior)

e discuss a correspondence between the matrix model and 2D type |IA

superstring theory.

< Logarithmic critical behavior is reminiscent of
the ¢ = 1 matrix model (matrix quantum mechanics) [Kazakov-Migdal 1988]

or the Penner model (zero-dimenisonal matrix model). [Distler-Vafa 1991]

=> Our matrix model ~ a SUSY version of the Penner model
~ 2D superstring with target-space SUSY.



Note:

e This matrix model is equivalent to the O(n = —2) model on a random
surface [Kostov 1989].

e lts critical behavior is described by ¢ = —2 topological gravity or (2,1)
minimal string theory. [Kostov-Staudacher 1992]

e It is easily seen by the Nicolai mapping H = ¢?2.
[Gaiotto-Rastelli-Takayanagi 2004]

For tr ¢*" or tr B™, this approach is effective in ]i,—expansion.

However, tr ¢2n+1, tr ¢2”+1, tr '(52"*1, ... are not observables in the
topological gravity. (tr %" = tr?" = 0.)

Actually, we see nontrivial logarithmic critical behavior for these operators.



Interesting observation:

> Suppose that 1 and 1) correspond to target-space fermions in some
superstring theory.

1 < (NS,R) sector, 1 <> (RNS) sector.
Then,

(_1)FL . ¢ — ’90, 755 — —
(_1)FR . ":b — —% "E

‘@I

In order for the matrix model action to be invariant under (—1)¥Z and (—1)¥%,
(-1)"r: B — B, O — —o,
(-1)*r: B> B, ¢— —o.

This means

B < (NS,NS) sector, ¢ < (R,R) sector.



2 Planar one-point functions

<]if tr (b"’> = [dxzx"p(x)

0

= s+ (1)) 24+ WV F [

0| 3

e reduces to a polynomial of u? for 1 even:

() =t (et =14

e exhibits logarithimic singular behavior as u? — 2 for n odd:
w = ;(p* —2)

1
<tr ¢2k+1> = (vy —v_) l(const.) W2 In w 4 (less singluar)] :
N 0



3 Planar two-point functions (Bosons)

e "Even-even’ correlators:

1 1
<Ntr »2F Ntr ¢2E>C,o = (polynomial of pu? indep. of (v, — v_))

e “"Even-odd”’ correlators:

1
<<I>2k+1 —tr gb2£> = (vy — v_)(const.) W Inw
N C,0

+ (less singular)

e “Odd-odd" correlators:
(®ok11 Par1) g = (v — vo)*(const.) " (Inw)?

+ (less singular),

where it is convenient to change a basis of the “odd” operators:

1 k 1 .
@ — 7t Zk—l—l 1, _ . 7t 21
21 = P+ L o (w)(vy —v )N r ¢

1=

with aag41,2:(w) regular at w = 0.



4 Planar three-point functions (Bosons)

We obtain

_ 3|
(@1®1®1) o = (V4 — V) 167

2 3 3 9
e - w(lnw)” 4+ O(w(ln w) )] :

_WS

(Inw)® 4+ O((In w)z)] .

(@121®3)cp = (v —1v)”
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5 Planar three-point functions (Bosons)

We obtain

_ . 3
(P1P1P1) o = (V4 — 1) 1673

2 3
(®1P1P3) oy = (Vo —v_)° ;T o sw(n w)? + O(w(In w)2)] :
’ T 87

(Inw)® 4+ O((In w)2)] .

e The results so far suggest

(Pokyt1 e Pakyt1) oo = (V4 — v-)"(const.) w? Lk (I )"
+ (less singular)

with v = —1. <— string susceptibility of ¢ = —2 topological gravity

Gravitational scaling dimension of @911 is k.

But, the logarithmic scaling violation is more severe than the case of the
c = 1 matrix model.
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<> For fermions,

1
Wokt+1 = Ntr PR 4.

_ 1 _
\Il = —tr 2k+1 + e o
2k+1 N ()

have the dimension k same as ®op1 1.
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6 2D type lIA superstring [Kutasov-Seiberg 1990, Ita-Nieder-Oz 2005]

o (Target space) = (x, ),
where € S with self-dual radius (R = 1) and ¢: Liouville.
(" Same as the Penner modell!)

e EM tensor (except ghost part):

1

L. 1 1 5
T = 2(6‘:13) 2%8% 2(6’90) +

with () = 2

Q

ToPp — e
> ¥ o VLWL

e Target-space SUSY is nilpotent.  (<— Same as MM!)

lo—H—iz(2 dz

Q—I—(z) — 6_2¢ 21 ( )7 Q—I— — fgi.Q—l—(z)a
2d7r_z

NI 5 W = z _ =

g(2) = e ¥HiTEs) Q=% g (3).

271
where vy + b, = /2eTH. N Exist only at the self-dual radius!

= Q1 =0 ={Q,Q_}=0
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e \ertex operators:
NS sector (—1)-picture : Tj(2) = e~ ¢ThatPer(2)
R sector (—;)-picture : Vi e(2) = e_%¢+56H+ikm+m"°(z)

with € = +1.

Locality with supercurrents, mutual locality, superconformal inv., level
matching

=> physical vertex operators with py = 1 — |k| and k = €|k|
Winding background:

(NS, NS) : T.(2) T_r(Z2) (ke Z+ ;) winding “tachyon”
(R+,R=): Vi 1(2) Vg, 1(2) (k=1/2,3/2,--") RR boson
(R—, R—|—) . V_k, _1(2) Vk,_|_1(2) (k = 0, ]_, 2, o °)

RR 2-form field strength

(NS, R—): T x(2) V_i, _1(2) (k=1/2,3/2,--+) fermion(—)
(R+, NS) : Vi, +1(2) Ti(2) (k=1/2,3/2,--) fermion(+)
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Interesting observation:

Let us assume the correspondence of supercharges between the matrix model
and the type IlA theory:

(Qa Q) <~ (Q—l—v Q—)

= SUSY transformation properties naturally leads to

1 _
b, = Ntrcb = d’z V%,H(z) V_%,_l(i),
1 ) _ _
U, = Ntr¢ < /d zT_%(z) V_%’_l(z),
1 , _
U, = Ntr¢ < /d zV%’H(z) T%(z),

1t B 5 _
~ r(—iB) < [d zT_%(z) T%(z).
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Furthermore, for k = 0,1,2,- - -,

(I)2k+1 — /d2z Vk+%,—|—1(z) V_k_;,_1(5)’
Uort1 < [d’z T_k_%(z) V_k—;,—l(z)’
Wopt1 < [d’z Vk+§,+1(z) Tk+§(2)’

1 _
]\rtr(—iB)k:_'_1 — /dzz T_k_%(z) Tk+%(2)

seems also natural.

(Single trace operators in the matrix model) <> (Integrated vertex operators in I1A)

(Powers of matrices) <> (Windings or Momenta)
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Note:

e RR 2-form field strength in (R—, R+) is a singlet under the target-space
SUSYs Q_, Q_, and appears to have no matrix-model counterpart.

o (Pori1), <‘I’2k+1\il2k+1>c,0 are nonvanishing in the matrix model.

=> The matrix model is considered to correspond to |IA on a background of the
RR 2-form.

Let us check by computing amplitudes in [IA theory.
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7 Correspondence between the matrix model and the IIA theory

> Correlation functions among integrated vertex operators in IIA on the trivial
background:

1
Vol.(CKV

< l;lvz > ) /D(ZB, P, H, ghOStS) e_SCFTe_Sint 1;[\}“

Sint = w/dzz Tﬁof(z)’l_’fo)(i) (<— O-picture (NS, NS) “tachyon™)
2 2
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8 Correspondence between the matrix model and the IIA theory

> Correlation functions among integrated vertex operators in IIA on the trivial

background:

1 .
V) = ey P00 -5

St = w [d*z Tﬁol)(z)Tl(O)(Z) (< O-picture (NS, NS) “tachyon™)
2 2

<> Correlation functions in I1A on (R—, R+) background: c.f.[Takayanagi 2004]
(mvi)= ((nwi] i),

where WRR is invariant under the target-space SUSYs:

SA Vi (ay : numerical consts.)

Wrr = (v —v) ¥ apw
=/

VIE{R 2 (nonlocal) — (nonlocal) , _
rd Zv—k,—l (Z)V;c,-l—l (Z) (p£: 1+|klak: 1927"')°

19

fd2z W’_l(Z)V_k,+1(Z) (pg =1 — |k|’ k = O, —]_, —2, oo



<> Standard Liouville theory computation for amplitudes leads to:

o<;tr(—zB) (I)2k+1>0 = i@w <(I)2k_|_1>0 N
1 _ _
_4(V+ —v_) egz apw! <(/ T—éTé) (/ V;<:+§,+1V—k;—§,—1) V?R>
1

= —2(1/+ —v_)apw T Inw,

® <(I)2k1—|—1(1)2k2+1>0 A

2 b1+bo+2
2 L1,b2EZ

A Vet Vormgo) U Viasgn Voo g o) VAT VRY

2
ki + ko)\?
( ;Tk '2) ) wk1—|—k2—|—1(lnw)2,
1.2,

e (I/_|_ — 1/_)2 27 ak;l_|_k2 a_q (

with appropriate regularization by the Liouville volume V;, = —2 In w.
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e Consistent with the correspondence!

e Higher powers of In w comes from resonances to the (R—,R+) background.
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Regularization:
For example, the amplitude

Fa+1)Ir(B+ 1) (—a—pB—1)
Pla+B+2) T(—a)l(-P)

[d%z2°2%(1 — 2)P(1—2)P ==

with
a = & = ksky — pe;pe, = k1 + ko,
- 1
ﬂ:ﬁ:k2k4_p£2p£4_2:—k1_1, (kl,kzzo,l,z,...)

is indefinite.

We regularize it as
a — o + €, a — a + €, B — 3+ e, B—B+e€

(k1+kz)!>2 V.

1 s
<, and get the result 2( e oo

with € = v

® This regularization preserves the mutual locality of vertex operators, i.e. does
not change o« — & and B — (3.
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9 Summary and discussions

<> We computed correlation functions in the double-well SUSY matrix model,
and discussed its correspondence to 2D type ||IA superstring theory on
(R—,R+) background by computing amplitudes in both sides.

This is an interesting example of matrix models for superstrings with
target-space SUSY, in which various amplitudes are explicitly calculable.

<> MM-counterpart of positive winding “tachyons” Tk_%T_

(k=1,2,-:-)7

Similar to the Kontsevich-Penner MM (introducing an external matrix source)?
[Imbimbo-Mukhi 1995]

k+3

> D-brane interpretation of the matrix model?
FZZT7?

<> Black-hole (cigar) target space?
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