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The non-perturbative renormalization group equations to analyze the dynamical chiral sym-
metry breaking are the nonlinear partial differential equations. Since the nonlinearity makes
the physical solutions non-analytic, we mathematically loosen the condition for the solution
and define the “weak solution”. The two types of weak solutions are introduced and success-
fully predict the physically correct vacuum, chiral condensates, dynamical mass, through its
auto-convexizing power for the effective potential. Thus it works perfectly even for the first
order phase transition in the finite density Nambu-Jona-Lasinio model.

1 Introduction

We analyze the dynamical chiral symmetry breaking by solving non-perturbative renormalization

group equations (NPRGEs) of the Wilsonian effective potential VW(x, t) and the mass function

M(x, t) ≡ ∂VW(x,t)
∂x , where x and t are the bilinear fermion operator ψ̄ψ and the renormalization

scale log(Λ0/Λ) respectively. In case that the dynamical chiral symmetry breaking occurs, these

PDEs encounter some singularities at t = tc even though the initial functions at t = 0 are

continuous and smooth. Therefore, we can not go beyond tc, and there is no way to calculate

infrared physical quantities such as the chiral condensates or the dynamical mass.

Various methods have been used to bypass these singularities, e.g., the bare mass[4], auxiliary

fields[1, 2, 3], etc. Here we propose a new direct method to solve the NPRGEs as PDEs [8, 9].

Such singular evolutions are unacceptable as classical solutions of the PDEs, but it is known

that we can treat such solutions as the weak solutions of the PDEs. Taking the finite density

Nambu-Jona-Lasinio model, we construct the two types of weak solutions by using the method

of characteristics.

2 Partial differential equations and the method of characteris-
tics

The NPRGEs of VW(x, t) and M(x, t) in the local potential approximation are

∂VW(x, t)

∂t
+ f(M, t) = 0, (1)
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∂M(x, t)

∂t
+
∂f(M(x, t), t)

∂x
= 0. (2)

Here

f(M, t) = −e
−3t

π2

[
θ
(
e−2t +M2 − µ2

)√
e−2t +M2 + θ

(
−e−2t −M2 + µ2

)
µ
]
, (3)

where µ is the chemical potential. The initial conditions are VW(x, 0) = 2π2gx2 and M(x, 0) =

4π2gx, where g is the coupling constant of the NJL 4-fermi interaction. The equation (1) can

be viewed as the Hamilton-Jacobi type equation well-known in the analytical mechanics, where

t, x, VW(x, t), M(x, t) and f(M, t) correspond to the time, the coordinate, the the action, the

momentum and the time-dependent Hamiltonian respectively. The equation (2) is derived from

the equation (1) and it should be noted that it takes the form of the conservation law, where

M(x, t) and f(M, t) correspond to the charge density and the current flux.
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Figure 1: g = 1.7gc, µ = 0.7. (a) Characteristics. (b) Evolution of mass function.

We obtain the ordinary differential equations (ODEs) equivalent to (1) and (2) by the method

of characteristics,

dx

dt
=

∂f

∂M
,

dM

dt
= −∂f

∂x
= 0,

dVW
dt

=M
∂f

∂M
− f.

(4)

The ODEs of x(t) andM(x, t) correspond to the canonical equations of Hamilton in the analogy

of analytical mechanics. Their solution x(t) are called characteristics which are also contours

of M(x, t) in this simple case (Fig. 1 (a)). There are regions where three or five contours

simultaneously passes at a point, which represent a multi-leaf structure that M(x, t) seems to

have the “multivalued” solution after tc (Fig. 1(b)).
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3 Weak solution of conservation law

The mass function M(x, t) must be a single-valued function because it is the physical quantity

defining the effective action at scale t. Instead of throwing away the NPRGE description after tc,

we introduce the weak solution of the PDE (2) in the sense of distributions [5, 8, 9]. We will make

a patchwork of the leaves to define a single-valued function M(x, t), but with discontinuities, so

that it might be the weak solution.

We write down the weak version of the PDE (2),∫ ∞

0
dt

∫ ∞

−∞
dx

[
M
∂φ

∂t
+ f(M, t)

∂φ

∂x

]
+

∫ ∞

−∞
dx M(x, 0)φ(x, 0) = 0. (5)

The weak solution is defined as to satisfy the above equation for any smooth and bounded

test function φ(x, t). The weak solution satisfies the original PDE (2) except for the points of

discontinuities. The position of discontinuity x = D(t), which is called the shock, is controlled

by the Rankine-Hugoniot (RH) condition,

dD(t)

dt
[M+ −M−] = f(M+, t)− f(M−, t), (6)

where M+ and M− are right and left limits at the position of discontinuity respectively. The

graphical interpretation of the RH condition for M(x, t) is that the discontinuity must cut off

lobes of equal area as shown in Fig. 2(a), where the solid lines show the weak solution[6]. In

this way we uniquely determine the shock D(t) which is showed in Fig. 2(b), where two shocks

appears pairwisely and they move towards the origin to be merged finally.
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Figure 2: (a) Equal area rule. (b) Characteristics and shock of mass function.
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4 Weak solution results for physical quantities

We show the results in the finite density NJL model where the first order phase transition occurs.

Snapshots in the course of renormalization are shown in Fig. 3, where the mass functionM(t, x),

the Wilsonian effective potential VW(x, t) and the Legendre effective potential VL(x, t) for
⟨
ψ̄ψ

⟩
are plotted. The five-fold structure of M(x, t) appears at the second row of Fig. 3, which means

a pair of shocks are generated. At the third row, the mass function is five-fold even at the origin,

which corresponds to the three-fold local minima in the Legendre effective potential. The time

when the two shocks are merged with each other at the origin is exactly the first order phase

transition point where the free energy of three local minima coincide. Finally at the fourth row,

the chiral symmetry is dynamically broken with the unphysical metastable symmetric phase at

the origin.

It is astonishing that our method of weak solution uniquely determines their singularity

structures and the resultant Legendre effective potential is always convexized. This means the

dynamical mass and the chiral condensates are uniquely calculated, and perfectly correct in the

sense that even in case there are multi local minima, the lowest free energy minimum is always

chosen automatically. This feature is quite a new finding and shows powerfulness of the purely

fermionic non-perturbative renormalization group and its weak solution[9]. This analysis has

been applied to QCD, even with finite density or non-ladder, and proved to work perfectly to

give physical quantities without any ambiguity[7].

In this case the Wilsonian effective potential corresponding to the weak solution of the

conservation law (2) is equivalent to the viscosity solution of the Hamilton-Jacobi equation (1),

which is another type of weak solutions[10, 11]. It is expressed as

VW(x, t) = sup
ẋ

[∫ t

0
ds G(ẋ(s), s) + VW(x, 0)

]
, (7)

where

G(ẋ, t) ≡ inf
M

[ẋM − f(M, t)]. (8)

The supremum in (7) is responsible for taking the maximum values in the multivalued solutions

at the second column of Fig. 3. In contrast to the weak solution in the sense of distributions, the

viscosity solution is defined even for some nonlinear second order parabolic and elliptic PDEs.

Consequently, it may be applicable to the NPRGE beyond the local potential approximation.
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Figure 3: Evolution of physical quantities by weak solution (NJL g = 1.7gc, µ = 0.7, t = 0.01, 0.5,
0.6, ∞). (a) Mass function. (b) Wilsonian fermion potential. (c) Legendre effective potential.
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