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Recently a lot of interesting investigations have been
made on 4d N=2 supersymmetric gauge theory

[Gaiotto, ....]

An important point is the relation with M-
theory or 6d (2,0) theory:

a class of N=2 theories, so-called class S theories,
s obtained by Mb5-branes on

Rl’g D4 * N in R x T*C x R3

Riemann surface €
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Why is it interesting?
This picture
> proposes the existence of various N=2 SCFTs

assoclated with the sphere with three punctures,
e.g. the so-called T theory

> enlarges drastically the N=2 theory to a large class
by associating the theory with the Riemann surface C

> explains/proposes >-duality of class S theories
as a symmetry of the Riemann surface C

> leads to a remarkable relation between 4d N=2

theories and 2d CFT on the Riemann surface C.
[Alday-Gaiotto- Tachikawa]



Low energy effective theory

ne low energy effective theory of N=2 gauge theory
on the Coulomb branch is Abelian U(1)" theory

coupled to some hypermultiplets.




Low energy effective theory

ne low energy effective theory of N=2 gauge theory
on the Coulomb branch is Abelian U(1)" theory

coupled to some hypermultiplets.

his theory Is determined by the Seiberg-Witten
curve, which is In this picture a curve In (x,t) € T"C':

N+ pr(t)aNTF =0
k

where @y is k-th differential on C.
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Aim:
elucidate dynamics of
N=1 gauge theories
with help of M-theory

There are much more Interesting dynamics in N=1

sauge theory, than N=2 theory: confining phase etc.
> how do we describe it in the M-theory?

The M-theory picture proposes dualities of a wide
variety of N=2 theories.

> N=1 duality? (e.g. Seiberg duality)
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Confining phase

et us consider the N=1 mass deformation of N=2
theory (in class S) by adjoint chiral mass W = uTr¢?.

From the Seiberg-Witten theory viewpoint, only the
singularities on the Coulomb branch (the loci where

the curve degenerates) is N=1 vacua when the
Mass parame‘ter S turned on. [Seiberg-Witten, Douglas-Shenker]

At the same time, we have another curve, so-called
Dijkgraaf-Vafa curve, which determines the
gaugiﬂO COﬂdeﬂsa'te, [Dijkgraaf-Vafa 2002, Cachazo-Douglas-Seiberg-VWitten]
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observation

W ~ U

D4 /
= ,

/ X6 deformation

W=X8+IX9

w-direc

Mass

NSH NSH rotation of NS5

(puncture)

lon should enter the second equation

describl

ng the vacua of N=1 theory
[Hori-Ooguri-Oz ,\Witten, de Boer-Oz]
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string theoretical
observation

W ~ U

V=X4+IX5 N4 /
I - .
g mass

/ . deformation

W=X8+IX9
NSH NSH rotation of NS5
(puncture)

rotated
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N=1 curve

he spectral equations give an M-theory geometry

7 L Z¢k(t)xN_k —i()

k
w? + E:Vk(t)wN_l‘C =
k

+ the condition fixing ¢, and V.

A combination of these equations gives the
Dijkgraaf-Vafa curve, a curve in (v, w). (v = zt)
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Generalized Hitchin system

The N=1 vacua in confining phase Is represented by a

generalization of the Hitchin system with
commuting fields ® and ¢, whose spectral curve Is

det(z-1—®) =0

detiflue 1L =@l = -\J rotated
det(zw -1 — ®p) =0

where ® and ¢ are su(

\)-valued differential and scalar

ERRERNGVING Drescribec

singularity at the puncture.

cf. Seiberg-Witten curve and Hitchin system [Galotto-Moore-Neritzke, Nanopoulos-Xie]
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Superconformal phase

his picture can also be applied to the case where the

theory flows to the IR N=1 superconformal
fixed point.

Focusing on the mass deformation of N=2
superconformal theory, e.g,, N=2 SU(N) gauge

theory with 2N flavors rotation of
punctures

d G d | C
O _’
®

D d D d

. XO
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N=1 duality from N=2 duality

In N=2 theory, the S-dualrty Is denoted by
D
/ N=1 deformation \
.

~° N=1 duality



PLAN

* Review of N=2 gauge theories In class S

» N=1 theories in confining phase

» Superconformal phase and N=1 dualrties
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in class S
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N=2 theory from M-theory

cotangent bundle on

Consider M-theory geometry

" Riemann surface C

RS « T*C x R?

N M5-branes on RY2 x C x pt with a partially
topologically twist (to preserve N=2 susy in 4d)

We call the obtained N=2 theory as class S which Is
classitied by N and C with punctures:

[Gaiotto, Galotto-Moore-Neitzke]
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Physical meaning
of the Riemann surface

complex structures UV coupling constants

matter fields in 4a
(flavor symmetry)

2 Mb5-branes on four-punctured sphere
s SU(2) theory with 4 flavors
with UV coupling constant g

DUNCtUres
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Selberg-Witten theory

The low energy effective theory on the Coulomb branch
parametrized by u; = (tr¢*) can be solved by the
Seiberg-Witten curve:

@ @ o= [ owtw

OF
50, Asw (u)

Cau Imbmdlp

>’<

massless BPS particlefappears



Selberg-Witten curve:
N-sheeted cover of C

The Seiberg-Witten curve Is
N
¥ + ZxN_kgbk(t) —=()
k=2

i is k-th meromorphic differential with poles at t = t,
and has moduli which are identified with the Coulomb
modull.

with the differential: Agw = xdt
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Regular singularity
and UV SCFT

Focus on the N=2 case the Seiberg-Witten curve Is
z? = ¢o(t)

REGULAR puncture:

m?2 me

¢2(t)fv (t—ta)Z > )\SWN::t_ta
. SU(2) flavor symmetry
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et us consider Type lIA construction of this theory

V=X4+IX5 D4

|

X6

NSS NSS

M-theory up-lift: add an S'-direction parametrized by o

t=a-(x6+ix10)

cylinder: Xe+1X0
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SU(2) w/ 4 tlavors

2 M5-branes on ©

parametrized by t

The M-theory curve Is

(v —m1) (v —m2)t® — (1 + q)Pa(v) + qg(v — m3)(v — my) =

m2

—>» P +s(t) =0,  ¢p~ 1

(z =v/t) lo =0 gilses




SU(2) w/ 4 tlavors

t=g =1 g: gauge coupling constant

N e flavor symmetry: SU(2)* c SO(8)



SU(2) w/ 4 tlavors

t=g =1 g: gauge coupling constant

N e flavor symmetry: SU(2)* c SO(8)
\ decoupling SU(2) (g — 0)
---------
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Building block

The three-punctured sphere is a building block for the
N=2 theories:

L

SU(2): free hypermultiplets in tri-fundamental
representation of SU(2)3

SU(N): non=trivial SCFTs with flavor symmetry
assoclated with the punctures
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N theory e

IN‘theory 1s @ 4d N=2 SCFT maxw:a\_):)na

* obtained by 6d (2,0) theory on a sphere with
three maximal punctures

o with SU(N)? flavor symmetry

* we know (a part of) spectrum of chiral operators

| Gaiotto-Maldacena, Gadde-Lastelli-Razamat-Yan, KM-Tachikawa-Yonekura-Yan]

* we do hot know Lagrangian except for the
N=2 case
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Asymptotically free theory

The N=2 theory with asymptotically-free gauge group Is
otained by considering irregular puncture
[Gaiotto-Moore-Neitzke]

O

For the N=2 case,

Ca

¢2(t) % (t = ta,)n <ﬂ>2>

A=V
n=4; free hypermultiplets in the doublet of SU(2)
n>4; nontrivial SCFTs of Argyres-Douglas type

| Cecotti-Neitzke-Vafa, Cecotti-Vafa, Bonelli-KM-Tanzini]
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SU(2) SYM theory

As an example, let us consider N=2 SU(2) SYM theory.
The Seiberg-Witten curve Is

A2 U A2
T = o, do = i

This has punctures at t=0 and oo with irregular

behavior:
1

E 4
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N=1 deformation

We want to consider N=1 deformations of class S
theories by adding the adjoint chiral mass terms

Z pi Tropy

In introduction, we saw that N=1 deformation
corresponds to the rotation of an NS>-brane:

V=X4+iX5 /

A Xe
W=X8+1X9
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N=1 deformation

rotation of puncture

to w-direction

2+ Zgbk(t)aﬁN_k =0

k

w” + ZVk(t)wN_k — 10
k

At punctures, Vi has singularity determined by w ~ p;at
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Proposal

A generalization of the Hitchin system with two
commuting su(N)-valued fields & and ¢ .

The spectral curve consists of
det(z -1 —®) =0
det(w-1—¢) =0

det(zw -1 — ®p) =0

where ® and ¢ have prescribed singularities at the
punctures of the Riemann surface.
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SU(2) SYM theory

et us consider the N=1 deformation of N=2 SU(2)
SYM theory (V, ¢) by

W = uTr¢?

At energy below the mass scale |M|, the theory 1s N=1

pure SYM theory describing gluino condensation In the

IR
(AaA%) = Aj))\le
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SU(2) SYM theory

The Seiberg-Witten curve was (v = xt)

A2
T = u+ A%

The boundary condition at t=0 gives

2A2
wQNMZUQ e Ht

No other singularity of (meromorphic function) V2

)
2 % A a: unknown constant
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SU(2) SYM theory

The condition from the commuting fields reads

w? e LN
A2 4 ut + A2

-3 [his gives 7= amel @ = ::2A2

Namely, the N=1 curve is simply




SU(2) SYM theory

These are indeed right values as follows:

® = 12A? are the loci on the Coulomb

branch where the massless monopole or dyon
appears.

By the mass deformation, the supersymmetric
vacua are only these points.

[Seiberg-Witten]
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SU(2) SYM theory

® by ellminating t, we get from the two
equations:

w® — W' (v)w £ p?A® =0 (W' (v) = pv)

This Is the curve obtained from the matrix
model pikraatvana 2002, or from the Konishi
anomaly equation [Cachazo-Douglas-Seibers-Witten]

w? — W' (v)w+ uS =0
with S = <)\a)\a> — ::,uA2 = 4+A3 _
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In summary,

Seiberg-Witten curve
= P2 (t)7

the quadratic differential @3 is
singular at t=0 and o



In summary,
L

A

Seiberg-Witten curve N=1 curve
= da(t), w? = Va(t),
the quadratic differential @, is the meromorphic function V>

singular at t=0 and o0 s singular only at t=0
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Application to other

CASES

This method can be applied to other SU(2) gauge

theories, e.g. SU(2)xSU(2) quiver gauge

commuting fields.

theory, the TN theory coupled to SU(N)
group €etc.

‘heory etc.

-or higher rank theory (with SU(N) gauge group),
there Is no systematic way to solve the model, because
there Is No easy expression denoting the two

But still we can solve case by case, e.g. SU(N) SYM

gauge
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and N=1 dualities
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N theory i

®
® ®
mMaximaal mal

Global symmetry: SU(N)3 x U(1)r x U(1)
R=Rn=2/2+ 13 |]=Rn=2-213 ke SIUN |

Chiral primary operators:

SUN)a | SUNe | SUN)e | U@)r | U@Q)

A ad] 1 -2
KB ad| 1 -2
HC ad| 1 -2

brup = trug = trug
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1N theories coupled to

=

N=1 vector multiplet

N
BERERGleiote the [N theory as :|>— N
N

VWe couple a pair of the TN theories to N=1 vector
mMulti p let: [Benini-Tachikawa-Wecht]

O
g —lh — iy
g

N
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N=1 duality
Al N

D

W = tr®(u — p') +mtrd?

v

Pty i) tr” — try<)

c~1/m

&
S-dual, —
T e / an
B D

W = et (2’ - i = i)
— 26trﬂﬂ’+ztrM% +trMpip
C
1 5
+4—étrM(2;—|—trM(;,uC

~ 12

(tr,&2 — i, e = tr,&%)



N N=2 N

A

N N

N=1 duality
Al N

D

W = tr®(u — p') +mtrd?

v

Pty i) tr” — try<)

c~1/m

indepehdent

exactly marginal

couplings

S-dual

T —1/7

W = et (2’ - i = i)
— 26trﬂﬂ’+ztrM% +trMpip
C
1 5
+4—étrM(2;—|—trM(;,uC

N

(tr,[l2 — i, e = tr,&%)
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AN

W = étr(2p4’ — p° — 0'%)
1 e
— Detrf AT+ trMjis

c~1/m

iIndependent
exactly marginal




1 e A
W = —trjaf’ +trMpiig + trMcic
c



1 . 5
W = —trjaf’ +trMpiig + trMcic
c
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M-theory interpretation?

The N=1 dualities may be able to understand as a

symmetry of eolored-punctured Riemann surface.
no puncture case [Bah-VWecht, Bah-Beem-Bobev-Wecht]

Sut the derivation of the adjoint fields from
the M-theory point of view s lacking.

cf. generalized Hitchin system viewpoint [Xie]

-urthermore, the meaning of the Riemann surface Is
not so clear in the N=1 set-up, compared to the N=2

@ISt canl be used to read off the UV N= 1 theel




HIggsing

We give a nilpotent vev (u) = p(o™), where p specifies
the embedding p: SU(2) = SU(N) and characterized by
a partition A

Focus on the embedding corresponding to A=(N-1,1):

1l

N
N Tpp N
N N

free bifundamental
TN ) .
ypermultiplet




Selberg duality
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Selberg duality
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‘ Higgsing by
(a,p) = p(o™)
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Selberg duality

1 N
q,q q, 9
N 1
W = Ct{(qg)g(qa)g _
~ka\ ([~ 1 ~1 A
= ¢ {(gia8"*) (" drp) — ~ (divd ") (4iG"7)

In the Seiberg dual, there are (2N)? mesons.
The above superpotential is mass terms of 2(N? + 1)

Mesons

—3 2(N?- 1) mesons



New duality of SQCD
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New duality of SQCD

D with N=2N
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non-conventional theory




Conclusi

on

VWe have considered N=1 dynamics of gauge theories.

< generalized Hitchi

<> dualities of N=1 t

k
k

w

N system describes the dynamics

of N=1 theories in confining phase.

Dualr

neorles via N=2 S-dualrties

Future directions

'y of asymptotically free t

W Othe
¥ Some relation with 2d theory on C?!

~ phases: N=1 Coulomb

—ligher rank theory In confining phase
V-theoretical interpretation of N=1 dualrties

neories

bhase from M-theory



Thank you very much

for your attention!



