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Chern-Simons vector models 
and duality in 3 dimensions

String theory and quantum field theory



Infinitely many interacting CFT (conformal zoo).

④ (M_theory)

Effective field theories of membranes.

⑤ (3d CFT)

⑥ (AdS/CFT correspondence)

Dual CFT3 of (HS) gravity on AdS4

② (Mathematics)

Knot theory, Jones polynomial, A polynomial

Pure (HS) gravity on AdS3 

[Witten ’89]

[BLG ’07, ABJM ’08]

③ (string theory)

Cubic string field theory, Open topological string theory [Witten ’85]

Chern-Simons theory

[Moore_Seiberg ’89]

[Gaberdiel_Gopakumar ’11]

[Witten ’89]

① (Condensed matter physics)

Quantum hole effect



(Pure) Chern-Simons theory

real p.imaginary
ψ̄ψ, ψ̄γµψ ψ̄γµνψ, ψ̄γµνρψ

2 Chern-Simons theory with a fundamental fermion

The Chern-Simons action is

iScs =
ik

4π

∫
tr(ÃdÃ+

2

3
Ã3) (22)

If we set Ã = −iA, then this becomes

iScs = − ik

4π

∫
tr(AdA− 2i

3
A3) (23)

The fermion action is

iSfermion = i

∫
dx0dx1dx2ψ̄( "D + im0)ψ (24)

= −
∫

dx1dx2dx3ψ̄( "D + im0)ψ (25)

where we used x0 = ix3. So the euclidean action −S = iSMinkowski is given by

−S = − ik

4π

∫
tr(AdA− 2i

3
A3)−

∫
d3x

√
gψ̄( "D + im0)ψ (26)

Define the light cone coordinate

x± =
x1 ± ix2

√
2

, A± =
A1 ∓ iA2√

2
= A∓, p± =

p1 ∓ ip2√
2

= p∓, (27)

Then

"A = γ+A+ + γ−A− + γ3A3 (28)

γ+γ+ = γ−γ− = 0, [γ3, γ±] = ±2γ±, γ+γ− = 1 + γ3 (29)

γ+− = γ3, γ+−3 = 1 (30)

p2s := p21 + p22 = (
p+ + p−√

2
)2 + (

p+ − p−

i
√
2

)2 = 2p+p− (31)

Let us fix the gauge by

A− = 0 (32)

Then the Chern-Simons action becomes

−S = − ik

2π

∫
d3x(−i)tr(A+∂−A3)−

∫
d3x

√
gψ̄( "D +m0 − γ3µ)ψ (33)

3

① CS coupling constant (k) is protected as an integer.

② Independent of metric. (Topological).

③ Exact “CFT” parametrized by (k,N) or λ=N/k.

④ Exactly soluble. (Wilson loop ⇔ Knot) . [Witten ’89]

N: rank of gauge group

Action

Feature



Vector (Sigma) models

Nontrivial fixed point 

③ (RG flow)

⑤ (AdS/CFT correspondence)

Dual CFT3 of HS gravity on AdS4

④ (Probe of geometry)

(quantum) description of geometry

② (Large N field theory)

① (Phenomenology)

Effective field theory of pion, Low energy theorem

[Klebanov_Polyakov ’02]

[Wilson_Fisher ’72]

[Wilson_Kogut ’74]

Dynamical symmetry breaking (or restoration) 

Landau-Ginzburg model

Soluble in 1/N expansion

[Nambu–Jona-Lasinio ’60]

[Gross-Neveu ’74]

cf. Polyakov action



CS Vector models

preserve conformal symmetry and higher spin symmetry 
in the ‘t Hooft limit.

・ couple to higher spin gravity (Vasiliev) theory 

surviving in the low energy limit. (AdS/CFT)

 ・ spectra of singlets are not renormalized in the ‘t Hooft limit. 

(Anomalous dimension is suppressed by 1/N). 

・ soluble in the ‘t Hooft limit and (euclidean) light-cone gauge. 

・ enjoy novel duality (bosonization) in 3 dimensions

and novel thermal phase structure.



CS Vector models
Action

⑤ “Mixed” sigma model

∫
d3x

(
Dµφ̄D

µφ+ λ6(φ̄φ)
3
)① Regular boson theory

② Critical boson theory

③ Regular fermion theory

④ Critical fermion theory

[Wilson_Fisher ’72]

[Gross-Neveu ’74]

Scs +

Scs +

Scs +

Scs +

Scs +

Scale invariant



Exact correlation functions

are almost determined by almost-conserved conformal symmetry and higher 
spin symmetry via bootstrap method.

[Maldacena-Zhiboedov ’12]

under the normalization 

3pt function

Critical boson Regular fermion
3d bosonization

and so on...



Exact correlation functions

are almost determined by almost-conserved conformal symmetry and higher 
spin symmetry via bootstrap method.

Explicit computation

[Aharony_Gur-Ari_Yacoby, Gur-Ari_Yacoby ’12]

Regular fermion:

Critical boson:



Exact correlation functions

are almost determined by almost-conserved conformal symmetry and higher 
spin symmetry via bootstrap method.

Explicit computation

[Aharony_Gur-Ari_Yacoby, Gur-Ari_Yacoby ’12]

Regular fermion:

Critical boson:

Duality!

→ level-rank duality!!



Thermal free energy
…

① Integrate out gauge field with gauge: A- =0.

② Introduce auxiliary singlet fields Σ to kill all interaction. 

(Hubbard-Stratonovich transformation)
③ Integrate out φ, ψ.

④ Evaluate it by saddle point approx. under translationally inv. config.

gauge: A- =0

Procedure

 S.Giombi_S.Minwalla_S.Prakash_S.Trivedi_S.Wadia_X.Yin  Eur.Phys.J.C72(2012)



Thermal free energy

CS Fermion vector model
 S.Giombi_S.Minwalla_S.Prakash_S.Trivedi_S.Wadia_X.Yin  Eur.Phys.J.C72(2012)



Thermal free energy

N=2 SUSY CS vector model
S.Jain_S.P.Trivedi_S.R.Wadia_SY  JHEP10(2012)194

(1 chiral multplet)



(2) Seiberg-like duality

(1) “3d bosonization”

Free vector boson

GN vector fermion 

Critical vector boson 

Free vector fermion
RG flow

RG flow

interpolated
by CS term

interpolated
by CS term

[Aharony_Guri-Ari_Yacoby ’12], [Maldacena_Ziboedov ’12]

[Guri-Ari_Yacoby ’12]

[Giveon_Kutasov ’08] [Benini_Closset_Cremonsi ’11]

N=2 case

where FB is given (in terms of the self-energy) in (4.25), FF in (5.18), and

βFBF = −λ4NV2β

6

[∫ 1/2

−1/2
du

∫
d3q

(2π)3
1

q̃2 − ΣB

][∫ 1/2

−1/2
du

∫
d3p

(2π)3
Trf

(
1

ip̃µγµ − ΣF

)]

= − NV2

96π2β2

λ4

λ|λ|hBhF
(
hF − λ4

2πλ
hB

)
. (6.16)

In the second line we used the integrals (6.10) and (6.11).

The bosonic contribution FB to the free energy is given by (4.34), and the fermionic

contribution can be computed as in section 5.2. The only difference is in equation (5.27),

where we must account for the corrected thermal mass equation when computing the integral.

We find that

∫ 1/2

−1/2
du

∫
d2q

(2π)2
1

β

∞∑

n=−∞

(g − 2f2)q2s
q̃2 + β−2µ2

F

=
1

8π|λ|β3

{
1

3

(
λ4

4πλ
hB

)3

+
1

3

(
hF − λ4

4πλ
hB

)3

+ µ2
FhF

}
.

(6.17)

The resulting fermionic contribution to the free energy is

βFF =
V2N

2πβ2|λ|

{
|λ|µ3

F

3
− µ3

F

12
− µ2

FhF
4

− 1

12

(
λ4

4πλ
hB

)3

+
1

πi

∫ ∞

µF

dy y
[
Li2(−e−y+πi|λ|)− c.c.

]}
. (6.18)

Combining all the contributions to the free energy and using (6.8), (6.9) and (6.14) to

simplify the expression, we obtain

βF = − NV2

2π2iβ2λ

{
µ2
F

3

[
Li2(−e−µF−πiλ)− c.c.

]
− µ2

B

3

[
Li2(e

−µB−πiλ)− c.c.
]

+

∫ ∞

µF

dy y
[
Li2(−e−y−πiλ)− c.c.

]
−
∫ ∞

µB

dy y
[
Li2(e

−y−πiλ)− c.c.
]}

. (6.19)

6.3 The supersymmetric case

The theory with N = 2 supersymmetry is conjectured to be self-dual [24], with the transfor-

mation at large N given by N → |k| −N and k → −k. In this section we verify that the free

energy is invariant under this duality.

In this theory, the couplings are given in terms of λ by12 [4]

λ4 = 4πλ , λ6 = 24π2λ2 , (6.20)

12 The supersymmetric theory also contains other couplings which do not contribute at largeN , as mentioned

in footnote 11.

30

where FB is given (in terms of the self-energy) in (4.25), FF in (5.18), and

βFBF = −λ4NV2β
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du
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(2π)3
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contribution can be computed as in section 5.2. The only difference is in equation (5.27),
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We find that

∫ 1/2

−1/2
du

∫
d2q

(2π)2
1

β

∞∑

n=−∞

(g − 2f2)q2s
q̃2 + β−2µ2

F

=
1

8π|λ|β3

{
1

3

(
λ4

4πλ
hB

)3

+
1

3

(
hF − λ4

4πλ
hB

)3

+ µ2
FhF

}
.

(6.17)

The resulting fermionic contribution to the free energy is

βFF =
V2N

2πβ2|λ|

{
|λ|µ3

F

3
− µ3

F

12
− µ2

FhF
4

− 1

12

(
λ4

4πλ
hB

)3

+
1

πi

∫ ∞

µF

dy y
[
Li2(−e−y+πi|λ|)− c.c.

]}
. (6.18)

Combining all the contributions to the free energy and using (6.8), (6.9) and (6.14) to

simplify the expression, we obtain

βF = − NV2

2π2iβ2λ

{
µ2
F

3

[
Li2(−e−µF−πiλ)− c.c.

]
− µ2

B

3

[
Li2(e

−µB−πiλ)− c.c.
]

+

∫ ∞

µF

dy y
[
Li2(−e−y−πiλ)− c.c.

]
−
∫ ∞

µB

dy y
[
Li2(e

−y−πiλ)− c.c.
]}

. (6.19)

6.3 The supersymmetric case

The theory with N = 2 supersymmetry is conjectured to be self-dual [24], with the transfor-

mation at large N given by N → |k|−N and k → −k. In this section we verify that the free

energy is invariant under this duality.

In this theory, the couplings are given in terms of λ by12 [4]

λ4 = 4πλ , λ6 = 24π2λ2 , (6.20)

12 The supersymmetric theory also contains other couplings which do not contribute at largeN , as mentioned

in footnote 11.
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Figure 7: Free energy (times −λ) in the N = 2 theory, in arbitrary normalization.

so that λ̂ = 2|λ|. The equations for the thermal masses become

µ2
B = (hB − hF )

2 , µF = hF − hB . (6.21)

The thermal masses are therefore equal, µ ≡ µB = µF , with µ satisfying

µ =
1

πi

[
Li2(e

−µ+πi|λ|) + Li2(−e−µ−πi|λ|)− c.c.
]
. (6.22)

The free energy is given by

βF =
V2N

2πβ2|λ|

{
−µ3

3
+

1

πi

∫ ∞

µ
dy y

[
Li2(e

−y−πi|λ|) + Li2(−e−y+πi|λ|)− c.c.
]}

. (6.23)

Both the thermal mass and the free energy are invariant under the duality, which in terms

of N and |λ| takes |λ| → 1 − |λ| with N/|λ| fixed. The free energy is plotted in figure

7. It is straightforward to generalize our results also to theories with different amounts of

supersymmetry, including the theories analyzed in [41, 4].

7 Summary of Results

In this section we collect the main results obtained in this paper.

We have computed the thermal free energy on R2 for various largeN vector models coupled

to Chern-Simons gauge fields, working exactly in the ‘t Hooft coupling λ = N
k . In particular,

we have explicitly tested the conjectured non-supersymmetric dualities (“3d bosonization”)

relating the regular/critical fermion coupled to Chern-Simons to the critical/regular scalar

coupled to Chern-Simons [1, 8, 5]. Our calculations closely followed [1, 4, 20], with the

difference that we included the effect of the holonomy around the thermal circle, as explained

in Section 2.

31

Puzzle against 3d duality



(2) Seiberg-like duality

(1) “3d bosonization”

Free vector boson

GN vector fermion 

Critical vector boson 

Free vector fermion
RG flow

RG flow

interpolated
by CS term

interpolated
by CS term

[Aharony_Guri-Ari_Yacoby ’12], [Maldacena_Ziboedov ’12]

[Guri-Ari_Yacoby ’12]

[Giveon_Kutasov ’08] [Benini_Closset_Cremonsi ’11]
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3
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1

3
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FhF

}
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2πβ2|λ|
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|λ|µ3

F

3
− µ3

F

12
− µ2

FhF
4

− 1

12

(
λ4

4πλ
hB

)3

+
1

πi

∫ ∞

µF

dy y
[
Li2(−e−y+πi|λ|)− c.c.

]}
. (6.18)

Combining all the contributions to the free energy and using (6.8), (6.9) and (6.14) to

simplify the expression, we obtain

βF = − NV2

2π2iβ2λ

{
µ2
F

3

[
Li2(−e−µF−πiλ)− c.c.

]
− µ2

B

3

[
Li2(e

−µB−πiλ)− c.c.
]

+

∫ ∞

µF

dy y
[
Li2(−e−y−πiλ)− c.c.

]
−
∫ ∞

µB

dy y
[
Li2(e

−y−πiλ)− c.c.
]}

. (6.19)

6.3 The supersymmetric case

The theory with N = 2 supersymmetry is conjectured to be self-dual [24], with the transfor-

mation at large N given by N → |k| −N and k → −k. In this section we verify that the free

energy is invariant under this duality.

In this theory, the couplings are given in terms of λ by12 [4]

λ4 = 4πλ , λ6 = 24π2λ2 , (6.20)

12 The supersymmetric theory also contains other couplings which do not contribute at largeN , as mentioned

in footnote 11.
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4

− 1
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(
λ4

4πλ
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)3

+
1
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Combining all the contributions to the free energy and using (6.8), (6.9) and (6.14) to

simplify the expression, we obtain

βF = − NV2

2π2iβ2λ

{
µ2
F

3

[
Li2(−e−µF−πiλ)− c.c.

]
− µ2

B

3

[
Li2(e
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∫ ∞
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∫ ∞
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6.3 The supersymmetric case

The theory with N = 2 supersymmetry is conjectured to be self-dual [24], with the transfor-

mation at large N given by N → |k|−N and k → −k. In this section we verify that the free

energy is invariant under this duality.

In this theory, the couplings are given in terms of λ by12 [4]

λ4 = 4πλ , λ6 = 24π2λ2 , (6.20)

12 The supersymmetric theory also contains other couplings which do not contribute at largeN , as mentioned

in footnote 11.
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Figure 7: Free energy (times −λ) in the N = 2 theory, in arbitrary normalization.

so that λ̂ = 2|λ|. The equations for the thermal masses become

µ2
B = (hB − hF )

2 , µF = hF − hB . (6.21)

The thermal masses are therefore equal, µ ≡ µB = µF , with µ satisfying

µ =
1

πi

[
Li2(e

−µ+πi|λ|) + Li2(−e−µ−πi|λ|)− c.c.
]
. (6.22)

The free energy is given by

βF =
V2N

2πβ2|λ|

{
−µ3

3
+

1

πi

∫ ∞

µ
dy y

[
Li2(e

−y−πi|λ|) + Li2(−e−y+πi|λ|)− c.c.
]}

. (6.23)

Both the thermal mass and the free energy are invariant under the duality, which in terms

of N and |λ| takes |λ| → 1 − |λ| with N/|λ| fixed. The free energy is plotted in figure

7. It is straightforward to generalize our results also to theories with different amounts of

supersymmetry, including the theories analyzed in [41, 4].

7 Summary of Results

In this section we collect the main results obtained in this paper.

We have computed the thermal free energy on R2 for various largeN vector models coupled

to Chern-Simons gauge fields, working exactly in the ‘t Hooft coupling λ = N
k . In particular,

we have explicitly tested the conjectured non-supersymmetric dualities (“3d bosonization”)

relating the regular/critical fermion coupled to Chern-Simons to the critical/regular scalar

coupled to Chern-Simons [1, 8, 5]. Our calculations closely followed [1, 4, 20], with the

difference that we included the effect of the holonomy around the thermal circle, as explained

in Section 2.
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Consider “fermionic” holonomy distribution!!
O.Aharony_S.Giombi_G.Gur-Ari_J.Maldacena_R.Yacoby. (arXiv:1210.4109)

Puzzle against 3d duality



Thermal free energy

N=2 SUSY CS vector model (1 chiral multplet)
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Figure 7: Free energy (times −λ) in the N = 2 theory, in arbitrary normalization.

so that λ̂ = 2|λ|. The equations for the thermal masses become

µ2
B = (hB − hF )

2 , µF = hF − hB . (6.21)

The thermal masses are therefore equal, µ ≡ µB = µF , with µ satisfying
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1
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Both the thermal mass and the free energy are invariant under the duality, which in terms

of N and |λ| takes |λ| → 1 − |λ| with N/|λ| fixed. The free energy is plotted in figure

7. It is straightforward to generalize our results also to theories with different amounts of

supersymmetry, including the theories analyzed in [41, 4].

7 Summary of Results

In this section we collect the main results obtained in this paper.

We have computed the thermal free energy on R2 for various largeN vector models coupled

to Chern-Simons gauge fields, working exactly in the ‘t Hooft coupling λ = N
k . In particular,

we have explicitly tested the conjectured non-supersymmetric dualities (“3d bosonization”)

relating the regular/critical fermion coupled to Chern-Simons to the critical/regular scalar

coupled to Chern-Simons [1, 8, 5]. Our calculations closely followed [1, 4, 20], with the

difference that we included the effect of the holonomy around the thermal circle, as explained

in Section 2.
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so that λ̂ = 2|λ|. The equations for the thermal masses become

µ2
B = (hB − hF )

2 , µF = hF − hB . (6.21)

The thermal masses are therefore equal, µ ≡ µB = µF , with µ satisfying

µ =
1
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[
Li2(e
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]
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Both the thermal mass and the free energy are invariant under the duality, which in terms

of N and |λ| takes |λ| → 1 − |λ| with N/|λ| fixed. The free energy is plotted in figure

7. It is straightforward to generalize our results also to theories with different amounts of

supersymmetry, including the theories analyzed in [41, 4].

7 Summary of Results

In this section we collect the main results obtained in this paper.

We have computed the thermal free energy on R2 for various largeN vector models coupled

to Chern-Simons gauge fields, working exactly in the ‘t Hooft coupling λ = N
k . In particular,

we have explicitly tested the conjectured non-supersymmetric dualities (“3d bosonization”)

relating the regular/critical fermion coupled to Chern-Simons to the critical/regular scalar

coupled to Chern-Simons [1, 8, 5]. Our calculations closely followed [1, 4, 20], with the

difference that we included the effect of the holonomy around the thermal circle, as explained

in Section 2.
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f(U) = free energy density on the flat space 
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YM on S2 x S1

1. Introduction

The AdS/CFT correspondence maps deconfinement transitions of large N gauge theories

on spheres to gravitational phase transitions involving black hole nucleation [1]. This

observation has motivated the intensive study of deconfinement phase transitions of large

N p+1 dimensional Yang Mills theories (coupled to adjoint and fundamental matter) on

Sp. The thermal partition function of a Yang-Mills theory on Sp is given by the Euclidean

path integral of the theory on Sp × S1. Upon integrating out all massive modes this path

integral reduces to an integral over the single unitary matrix U

ZYM =

∫

DU exp[−VYM(U)] =
N
∏

m=1

∫ ∞

−∞
dαm





∏

l #=m

2 sin

(

αl − αm

2

)

e−VY M (U)



 (1.1)

where U is the zero mode (on Sp) of the holonomy around the thermal circle, eiαi (i =

1 . . . N) are the eigenvalues of U . VYM(U) is a potential function whose precise form

depends on the theory under study. At least in perturbation theory [2] and perhaps beyond

[3, 4], the potential VYM(U) is an analytic function of U . (1.1) may be thought of as

a Landau Ginzburg or Wilsonian description of the holonomy U , the lightest degree of

freedom of the finite temperature field theory.

The effective potential VYM(U) was computed in free gauge theories [5, 2]; it has also

been evaluated at higher orders in perturbation theory in special examples [6, 7, 8, 9].

In all these examples VYM(U) is an attractive potential for the eigenvalues of the unitary

matrix. t’ Hooft counting and the requirement of extensivity force VYM(U) to scale like

N2Vp. In the special case of a conformal theory the potential scales like N2VpT p and the

attraction between eigenvalues grows arbitrarily large at high temperatures.1 On the other

hand the integration measure DU (which vanishes when any two eigenvalues coincide)

supplies a temperature independent repulsive potential for the eigenvalues. At large N

the leading piece of the partition function is determined by a saddle point distribution of

eigenvalues of U . Repulsion from the measure dominates over attraction from the potential

at low temperatures and the eigenvalues of U are distributed all over the unit circle in the

complex plane.2 The integral (1.1) undergoes Gross-Witten-Wadia type deconfinement

transitions [10, 11, 12] at VpT p of order unity.3 At high enough temperatures the saddle

point eigenvalue distribution of U has support on only a small arc in the unit circle of the

complex plane. The size of this arc goes to zero as VpT p → ∞. In this ‘decompactification’

limit, the holonomy matrix U is localized around the unit matrix.

In this note we study the finite temperature phase structure of renormalized level k

U(N) Chern-Simons theories coupled to a finite number of fundamental fields on S2 in the
1Most of the general discussion of this paragraph applies also to non conformal theories in the appropriate

high temperature and/or large volume limit.
2If the matter content of the theory consists only of fundamental plus adjoint fields, and if the matter

content is held fixed as N which is taken to infinity and the low temperature saddle point for U is the clock

matrix; a matrix whose eigenvalues are uniformly distributed on the unit circle in the complex plane.
3At weak coupling at least the system undergoes either a single first order transition or a second order

transition followed by a third order phase transition depending on the details of a quartic term in the

potential V (U) [2].

– 3 –

Thermal partition function
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In the large N, holonomy distributes on [-π,π] densely.

Therefore we obtain

√
c
′
= 2

∣∣∣∣Re
∫

dαλρ(α) log coth

√
c
′
+ iα

2

∣∣∣∣ (3.38)

This shows c′ = c.
Under the duality transformation, the free energy becomes

−6π|λ′|F ′
N=2

N ′V2T 2
=
√
c
′3 − 6|λ′|

∫
dαρ′(α)Re

∫ ∞

√
c
′

dyy log tanh
y + iα

2

=
√
c
′3 − 6

∫
dα

(
1

2π
− |λ|ρ(α+ π)

)
Re

∫ ∞

√
c
′

dyy log tanh
y + iα

2

=
√
c
′3 − 6

∫
dα (−|λ|ρ(α))Re

∫ ∞

√
c
′

dyy log coth
y + iα

2

=
√
c
′3 − 6

∫
dα|λ|ρ(α)Re

∫ ∞

√
c
′

dyy log tanh
y + iα

2
. (3.39)

where we used (3.37). This shows F ′
N=2 = FN=2 since c′ = c and |λ′|

N ′ = |λ|
N
.

4 Finite λ in high temperature limit

The density function is defined by

ρ(α) =
1

N

N∑

m=1

δ(α− αm) (4.1)

If we expand ρ in Fourier expansion

ρ(α) =
1

2π

∑

n∈Z

ρne
inα (4.2)

then Fourier mode is expressed by

ρn =

∫
dαρ(α)e−inα =

∫
dα

1

N

N∑

m=1

δ(α− αm)e
−inα =

1

N

N∑

m=1

e−inαm (4.3)

Therefore

TrUn =
N∑

m=1

einαm = Nρ−n (4.4)
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α
-π π

ρ

ζ<<1
No gap phase

-πλ πλ

Phases of CS vector modelWe also take high temperature limit so that

V2T
2 = ζN (1.6)

Then only the first term remain in the leading of large N .
∫

DΦ exp
[
−S ′

CS[A
′]− Smatter[Φ, A = Asol + A′]

]
∼ exp

[
−T 2V2f(U)

]
(1.7)

Then the partition function becomes

Z ∼
∑

Mm∈Z

∫
(
∏

m

dαm)

(∏

l #=m

2 sin
αl − αm

2

)
e−ik

∑
a αaMa exp

[
−T 2V2f(U)

]
(1.8)

By using Poisson resummation formula

1

2π

∑

Mm∈Z

e−ikνmMm =
1

k

∑

nm∈Z

δ(νm − 2πnm

k
) (1.9)

the summation over the magnetic flux can be performed.

Z =
1

kN

(∏

m

∑

nm∈Z

)(∏

α

# sin
ν(α)

2

)
exp

[
−T 2V2f(U)

]
∣∣∣∣
νm= 2πnm

k

(1.10)

1.2 Axial gauge calculation A3 =
iα
β

Let us consider Chern-Simons-matter theory on Σ× S1

S = SCS + Smatter (1.11)

where Smatter represents matter action and SCS is Chern-Simons action

SCS = −iκ

∫

Σ×S1

Tr[AdA+
2

3
A3] (1.12)

A is gauge field which takes anti-hermitian value and κ = k
4π , where k is an integer. We

decompose it into S1 part and Σ part:

A = AΣ + AS1 . (1.13)

Then the CS action reduces to

SCS = −iκTr

[∫
AS1dAS1 + AΣdAΣ + 2AS1 ∧ FΣ

]
(1.14)

Here we fix the gauge by ”almost’ axial gauge, which is such that AS1 is diagonal
(Cartan) and constant. (3 is S1 direction.) The normalization is such that

∫

S1

AS1 = iα ↔ A3 =
iα

β
. (1.15)
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3d bosonization

GK duality
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3d duality & deformation

N=2 CS vector model

CS boson-fermion vector model

Critical boson Regular fermion

S.Jain_S.Minwalla_SY  arXiv:1305.7235

(marginal & massless)

(relevant)

O.Aharony_S.Giombi_G.Gur-Ari_J.Maldacena_R.Yacoby. (arXiv:1210.4109)

(i)
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(iii)
3d bosonization

GK duality

self duality

Most renormalizable



・ CS vector models are solvable in the 't Hooft limit with 
euclidean light-cone gauge.

・ CS vector models have SUSY (Giveon-Kutasov) 
and non-SUSY (3d bosonization) duality. 

・ Strong evidence for these dualities has been provided by thermal 
free energy by taking account of fermionic holonomy distribution.

・ New phase appeared due to fermionic holonomy distribution.

・ SUSY and non-SUSY duality have been connected by RG-flow.

Summary


