
Trace Anomaly Matching and Exact Results For
Entanglement Entropy

Shamik Banerjee
Kavli IPMU

Based On arXiv: 1405.4876, arXiv: 1406.3038, SB

July 22, 2014



Introduction

I Entanglement entropy is an important and useful quantity
which finds applications in many branches of physics, starting
from black holes to quantum critical phenomena.

I In general it is a difficult thing to compute even for free field
theories.

I Many exact results are known for conformal field theories but
non-conformal field theories are even more difficult to deal
with.

I Some exact results are known for two dimensional
non-conformal field theories and for strongly coupled theories
via gauge-gravity duality (Ryu-Takayanagi formula).



Goal

I Our goal is to propose a general algorithm for computing
entanglement entropy in non-conformal field theories.

I It turns out that the techniques developed by Komargodski
and Schwimmer to prove the a-theorem in four dimensions is
useful for this purpose.



Replica Trick

I Entanglement entropy is usually computed by replica trick.

I In replica trick the entanglement entropy is defined as,

SE = n
∂

∂n
(F (n)− nF (1)) |n=1 (1)

where F (n) is the free energy of the Euclidean field theory on
a space with conical singularities. The angular excess at each
conical singularity is given by 2π(n − 1). The detailed
geometry of the space is determined by the geometry of the
background space and the geometry of the entangling surface.



Two Dimwnsions

I Let us consider a massive scalar filed of mass m in two
dimensions described by the Euclidean action,

S =
1

2

∫
((∂φ)2 + m2φ2) (2)

I We want to compute the entanglement entropy of a
subsystem which want to keep arbitrary.

I It could be an infinite half-line or it could be an interval of
finite length. In order to do this one has to compute the free
energy of this theory on a space with conical singularities.

I One way to do this is to use the identity (Calabrese-Cardy,
Casini),

∂

∂m2
lnZn = −1

2

∫
Gn(~r ,~r)d2~r (3)

I Gn(~r ,~r ′) is the Green’s function of the operator (−∇2 + m2),
on the singular space.



I Now instead of doing this one could also use the following
identity,

m2 ∂

∂m2
lnZn = −1

2

∂

∂τ
|τ=0 lnZn(τ) (4)

I −lnZn(τ), is the free energy computed on the cone for the
theory defined by the euclidean action,

S(τ) =
1

2

∫
((∂φ)2 + m2e−2τφ2) (5)

I Now this is precisely the coupling of the dilaton to the
massive theory.

I So we can interpret the number τ as a constant background
dilaton field.

I This shows that we can calculate the entanglement entropy
once we know the dilaton effective action on the cone.



More general case in two dimensions

I Consider a UV-CFT deformed by a relevant operator.

I When the subsystem is an infinite half-line, Calabrese and
Cardy proved a general result.

I They proved that,∫
cone

(< Tµ
µ >n − < Tµ

µ >1) = −πncUV − cIR
6

(1− 1

n2
) (6)

I < Tµ
µ >n denotes the expectation value of the trace on the

cone and < Tµ
µ >1 denotes the expectation value of the trace

on the plane.

I The above formula computes the contribution of the conical
singularity to the trace of the energy-momentum of the
non-conformal theory.

I Let us first show that this result can also be obtained by
coupling the theory to a constant background dilation field on
the cone.



Brief review of the Komargodski-Schwimmer method

I Our deformed field theory is not conformal but it can be made
conformally invariant by coupling to a background dilaton
field.

I The dilaton, τ , couples to the deformed theory as,

S = SUV
CFT +

∫
d2x
√
h g(eτ(x)Λ)Λ2−∆O (7)

I This is conformally invariant if the metric and the background
field are transformed as,

hab → e2σhab, τ(x)→ τ(x) + σ (8)

I To first order dilaton couples to the trace of the energy
momentum tensor, ∼

∫
τ(x)Tµ

µ (x).

I So to compute the integrated trace we can couple to a
constant dilaton field.



I We need to compute the dilaton effective action for a
constant dilaton background field.

I KS have shown that this action consists of two parts. One is
the Weyl non-invariant universal term which is completely
determined by the conformal anomaly matching between the
UV and the IR.

I The other part is the Weyl invariant part of the effective
action which can be written as a functional of the Weyl
invariant combination e−2τhab.



Universal Part In Two dimensions

I The trace of the energy-momentum of a conformal field
theory of central charge c on the cone is given by
(Cardy-Peschel, Holzhey et.al),∫

cone

√
h < Tµ

µ >=
c

24π

1

2
(1 +

1

n
)

∫
cone

√
hR(h) (9)

I This is the response of the 2-D CFT on the cone to a scale
transformation.

I Using this and the anomaly matching condition gives us the
universal (Weyl non-invariant) part of the dilaton effective
action for a constant dilaton field to be,

F (n, τ) = −cUV − cIR
24π

1

2
(1 +

1

n
) τ

∫
cone

√
hR(h) (10)



I So we get,∫
cone

< Tµ
µ >n,universal = −cUV − cIR

24π

1

2
(1 +

1

n
)

∫
cone

√
hR(h)

(11)

I The non-universal contribution is purely bulk contribution in
this case because there is no other length scale in the problem
and hence cancelled in the combination∫
cone(< Tµ

µ >n − < Tµ
µ >1).

I Hence we arrive at the Calabrese-Cardy result once we note
that, ∫

cone

√
hR(h) = 4π(1− n) (12)



I Now let µ denote the mass scale associated with the relevant
operator.

I Since µ is the only dimensionful parameter associated with
the theory a scale transformation is equivalent to a change in
the parameter. (Calabrese-Cardy)

I So,

µ
d

dµ
SEE = n

∂

∂n
|n=1 (µ

d

dµ
F (n)− nµ

d

dµ
F (1)) (13)

I And,

µ
d

dµ
F = −

∫ √
h < Tµ

µ > (14)

I This gives us,

µ
d

dµ
SEE = −cUV − cIR

6
(15)

I This is precisely the Calabrese-Cardy answer,

SEE = −cUV
6

ln(µa) +
cIR
6
ln(µLIR) (16)



Higher Dimensions

I Same Principle !

I Non-trivial non-universal terms in dilaton effective action /
entanglement entropy. (See arXiv: 1405.4876, arXiv:
1406.3038, SB ; for more details on the type of terms it gives
rise to)

I No symmetry principle fixes the non-universal terms of the
dilaton effective action except that they are Weyl-invariant
under a simultaneous transformation of the metric and the
field τ .

I But now we have a precise thing to compute in higher
dimensions which is valid for any field theory !



Four Dimensions

I In Four dimensions dimensions the universal (Weyl
non-invariant) part of the dilaton effective action for a
constant dilaton filed is given by,

F (n, τ) = −τ
∫
cone

d4x
√
h (

cUV − cIR
16π2

W 2 − 2(aUV − aIR)E4)

(17)

I This gives rise to a term which is universal,

SEE ⊃ −n
∂

∂n
|n=1

∫
cone

d4x
√
h (

cUV
16π2

W 2 − 2aUVE4) ln(µa)

(18)

I In fact, this term always appears if you compute holographic
entanglement entropy in RG-flow geometries.

I Our method extends this to any field theory and explains this
as the consequence of trace-anomaly matching.


