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Introduction

We consider 5-dimensional bulk whose 4D boundary at r — oo (UV) has
Friedmann-Robertson-Walker (FRW 4) metric with negative cosmological
constant ( —A.)

FRWa X5
uv

5D hulk Tr

There also appears a parameter C (or ¢g) as an integration constant of Einstein
Equation for 5D bulk. C corresponds to the energy density of the 4D boundary
theory.

We consider the effect of A and C to the 4D boundary theory by studying the,
glueball spectrum, Entanglement Entropy by using the holography of the 5D bulk.

We find that there is an phase transition of 4D boundary theory at critical C.
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5D bulk

5D bulk metric is obtained in the following ansatz,
2 2
r

R
ds? = o7 (—n(r, ©)%dt* + A(r, t)* a§()y;;(x)dx'dx) ) + —dr2
R: constant ( AdS; radius) FRWs XY7Z
We will find n(r, t) and A(r, t) which satisfies w
n(r,t) > 1, A(r,t) > 1 for r - oo, 5D bulk Tf

The 4D boundary (r = o) metric becomes FRW 4 metric.
ds; = —dt* + a§(t)y;j(x)dx'dx’

ay(t): scale factor

—2
vy =8; (1+555,(x)°) k=0, +1)

We consider k = —1 (negatlve curvature) case



Einstein Equation for 5D bulk

ay(t), A(r,t) and n(r,t) are determined by 5D Einstein Equation.
RMN: _AgMN (M,N=0---5) (A=%)

. . 1 d(ag(®)A(rt)) r _
With the following ansatz, P ” = ZN(1,t) (P binetruy etal

2000) (D. Langlois’ 2003)
the 5D Einstein Equation becomes
2
ao(t))z 1 _ﬁ 2 (z (z ) ) CR?
(ao(t) ai(t) R4A(r’ "+ R RA(r' t) t ag(O)r2A%(rt)

a s a
o= — = —_—
( at and ar )

Cis given as an integral constant and it is called “ holographic dark
radiation” .



Friedman equation

Furthermore, we impose the Friedman equation for boundary

FRW, o
FRW. *1Y72
- LDy
dsi = —dt* + aj(O)y;(x)dx'dx/ 5D bulk Tr
(do(t))z 1 _A(D) A(> 0): ogical tant
ao(t) aj(t) : @ cosmological constan

We assume that time evolution of A(t) and aqy(t) is very slow.

: ap(t)
A(t) ~ 0, 20 (D 0



5D bulk metric

Then, we can get the A(7,t) and n(r,t) as follows

2

(e o) o)

+C0(; n= 1

Co = CRZ/(4a‘(§) : energy density of dual 4D Yang-Mills theory

R? . i
o = 7\/1 : cosmological constant of boundary 4d space-time.
(K.Ghoroku and A. Nakamura 2012)

We will use ¢g and ry instead of € and A.

ap(t) 0

Since we assume A ~ 0 and
ao(t)

Cy, Tp ~ constant



5D bulk (cy = 0, 19 = 0)

When ry = 0 (4D flat boundary metric ) and ¢g = 0, 5D bulk
metric becomes

4 . . 2
L de? + (1 +co(3) )dx‘dx‘) + 5 dr?

. 4
By changing coordinatesas ¥ = r\/l + f—4c0

The above metric becomes 5D AdS-Schwarzschild black hole

R2d¥?

dst = 5 (~f@ae + (dx))’) + 5 T fm =1 B

Thus ¢ cotributes to the temperature.



5D bulk (C() > 0, To = 0)

5D bulk solution becomes

2 ) . 2
ds? = % (—n(r)?dt* + A(r)2aj®)y;()dxtdx) ) + 1:_2 dr?

1/2 o2 Z_CO o
A(r) = ((1 + (%")2) + ¢o (§)4> n(r) = <<1+(7) 21 &) >

1/2
At r =1y = (R —1§)"", gu xn(ry) =0.

4
r . .
When ¢y > R_?“ there is an “event horizon” at r = ry and the

Hawking temperature Ty is given by

2 2
+./CoR
TH<1+TO °0 >
2
"H
wR%2A(ry)

TH=



Hawking Temperature

Hawking temperature Ty

2, —p2
rH<1+r0 '\‘/?Z_O > 2 .2 \1/2
TH == Tl’RzA(TH) ry = (\/C()R — TO)

As cg (energy density) becomes large, Ty increases.

As 1 (cosmological constant) becomes large, Ty decreases.

Atco =1¢/R*, Ty =0.
Thus at ¢y = %, there is a phase transition between

confinement phase and deconfinement phase.



5D bulk (CO > 0, g = 0 )

4
r 1/2 .
When 0 < ¢y < R—Z, ry = (\/CORZ — r%) is not a real number

and there is no “event horizon”

< Dual 4D field theory is in the “confinement phase”.
Stable Glueball spectrum by the 5D bulk metric fluctuation



Glueball mass spectrum

Glueball spectrum can be obtained by the fluctuation h;;(t, x5, 1)

of the 5D bulk (gMN) (R.C. Brower, S.D.Mathur and C.I. Tan. 2003)

\/%g Oy(v=—gg9" dyh;) =0

By decomposing  h;j(x, 1) = p;j x (x*) (1)
The equation of 4D part y(x*) is given by

1
o 0,1/ g49" 0, x(x*) = m®y(x)

m: Glueball mass



Glueball mass spectrum

Equation for ¢(7) becomes

07 ¢ + 92(r)0,¢ + (§)

4 2
n(r)?

g2(r) =0, (log [(%)5 n(rA(r)? D

m: glueball mass

$(r)=0



Glueball mass spectrum (rg = 0, ¢y = 0)

First we consider the ¢y = 0 case (analytic calculation).

By defining x = — , equation for ¢p(r) is given by
ro

R4m?2

ayzc¢ T gZ(x)ax¢ + 2x4A2(x) ¢ 0

8 1
Where g,(0) =1 (5~ z,5) A =1+

¢ becomes normalizable by choosing m as

4'1'0

m? = -AN+1)(N+4) 4="2 N=0,12--

The lowest glueball mass (N=0) is finite as
m, = 22

This was obtained by the field theory by C.Fronsdal, 1979



Glueball mass spectrum (1o = 0, ¢y, = 0)

Next we consider the g = 0, and ¢y = 0 case and will show
that the lowest glueball mass m, decreases as ¢y becomes large.

equation for ¢(r)
4 2

R
02 +9:3,0 + () pomz®) =0

g2(r) = 0, (log [(g) n(r)A(r)3 D



Glueball mass spectrum (cy > 0)

By factorizing ¢ as p=e ] drg2®) f(

The equation for f(r) becomes the Schrodinger equation
—d:f+V()f =0

with the potential V(r) |

r




Glueball mass spectrum (cy > 0)
WKB approximation gives

JV=Vdr=(N+3)m N=0,12- I

19 1. _ 2 rp\4 L \
V=185 +30:9: = ;) -

n2 \r

The lowest glueball mass m is given when N=0 in the above

formula. The relation between mg, and ¢y is calculated
numerically. |

o

For critical ¢y = P T W

Lowest glueball mass m, becomes zero.




Glueball as an rotating closed string

Glueball with large quantum number: arotating string in the

bulk
>

2 2
Bulk metric:  ds? = = (—n(r)?dt? + A(r)?ds3) + 7 dr”

1?:2 + p%(d6? + sin? 6 d¢?) )

where ds3 = a§(t) (

p radial coordinate in 3d space in FRW,

The string world sheet coordinates are taken as (t,0) = (t,1).

The Ansatz of the closed string rotating around $% are 0 = 0(r)
and ¢ = wt.



Spin and Energy

Lagrangian of a closed string

r (M s ap a2 2.2 1 (R\*
L=— o RzA ﬁ—w p?sin? 0 ag(t) <0 p aO(t)-I_F(?))

Then, we can obtain the spin and Energy as follows.

0% p?ag(0)+—5(2)’

Spin  Jy =" =— fdr Azwp sin?0 |-

\ Z—Z—wzpz sinZ fa}(t)

Energy E| —G;—ZL—L =

2
n . 2
A—z—wzpz sin? 0a§(t)

2’

4
12..2 i B
- J 0"2p2ag(0)+-5(2)



Regge Behavior

By solving the equation of motion numerically, we can get a

Regge behavior

— 2
]s — agluballEs .

Js — E relationfor rg=1, R=1

We calculate the relation between String tension (k = 1 )

and ¢y .

4
oy . r
For the critical ¢ = R_(‘)“

string tension becomes zero.
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Entanglement Entropy
We consider the entanglement entropy on the 4D FRW boundary

whose entangling region is the 3D sphere with the radius of p,

Entanglement Entropy Sgg .

Sgg = —Tr(palnpy)

Pag =Trgp;ys : reduced density matrix

Pio: = |P)(P| density matrix of the total system



Entanglement Entropy by AdS/CFT
Entanglement Entropy by AdS/CFT (S. Ryu and T. Takayanagi '06)

_ SAREA
46

SEE

S area - Area of the minimal surface in 5D bulk space

G,(f) . Newton constant in 5D bulk

5D bulk minimal suraface p(z)

=

Boundary (FRW4)




Entanglement Entropy

1
By changing coordinates as z = 12 /1 (r. = (coR* + r$)*), The spatial
part of the bulk metric becomes

1 Z 2 R2
ds2pace = o3 (2% + 21§ + =) a3(®)y(P)?*(dp? + p*>d03) + = dz?
R Z Z

1
2
i
14-
1

p = (Z?zl(xi)z)z : the radial coordinate on the 4D boundary (FRW )

Y(p) =

From the Ryu-Takayanagi conjecture, we consider the minimal surface
p(z) in the bulk.

S. Ryu and T. Takayanagi ‘06 5D bulk minimal suraface p(z)
L

Adary (FRW4)




Entanglement enteropy

RZ

S z(p=0)
AREA _ j p(2)?B |Bp'(2) +
0

2
41 \ Z

RZ
The minimal surface solution p(z) is obtained numerically as
follows

2 4
a r
p =2 (2+ C+2r0>




Entanglement Entropy

The minimal surface solution p(z) can be expanded in terms of z.

p(z) = po + PzZZ + P4Z4 + p4LZ4 logz + -

(1-@8/0)°)r* _ (1) we (@)2

Za%por% ! PaL 4a(2,p0r§ ap

where p, = —

Po: size of the entangling surface

5D bulk minimal suraface p(z)

P4 : arbitrary constants

Boundary (FRW4)

ap(t)
ap(t) 0,

For the coefficient of log term py; ~ 0



Entanglement Entropy

Then, we can get the Entanglement Entropy Sgr as

Areay

SEE= V1 ATre? T V2 log(P_eo) + Sfinite

5D bulk minimal suraface p(z)

€ < 1: UV cutoff /N
s
V1= - / o

R4' oundary (FRW4)

L\ 2
y2= N? (1 + Area, (?) ) :independent of UV cutoff €
0

Area, = 4m(ay()y(po))?p5  : proper area of 4D FRW space
1
dstrw, = —dt? + ai(®Oy(p)*(dp® + p%dQ3) y(p) =

_p?
1-7



Entanglement Entropy

the Entanglement Entropy Sgg

Areay

SeE= V15— + V210g(") + Spimire € < 1: UV cutoff
N/
2 Qo
Y,=N (1 + Areay (—) )
ao

The second term of ¥ is the effect of the curvature of FRW,
(J. Maldacena, G.L. Pimentel 2013)

For Zoig &1, Yy ~ N?:degree of the freedoms in the dual field
0

theory.




Entanglement entropy

Next we consider the UV finite term Sy ize-

Area, Po
SEE= V1 A1re? + yZIog(?) + Stinite
2
The Hawking temperature Ty is given by Ty = ——-

By numerical calculations with fixed large size py, we find that
S finite € T,3q at large Ty .

This is the same behavior as

[~ =] W Y]
L o L (=] Ln
LI e e

the thermal entropy in 4D theory. | L




Summary

* We consider 5-dimensional bulk whose 4D boundary has FRW, metric with
negative cosmological constant —A.

* There is also a parameter ¢y corresponding to the energy density of 4D boundary
field theory.

2
* When cosmological constant is zero (ro = %ﬁ = O), 5D bulk becomes AdS5-

Schwarzschild Black hole.

4
" When 0 < ¢, < %, dual UV field theory is in the “confinement phase”.

The lowest glueball mass becomes massive.
Regge behavior by closed string calculation.

4
- When % < ¢y, an “event horizon” appears and dual field theory is in the

deconfinement phase.
The lowest glueball mass becomes zero,
Holographic Entanglement Entropy becomes Thermal Entropy



