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Introduction 

  We consider 5-dimensional bulk  whose 4D boundary at 𝑟 → ∞ (UV)  has  

Friedmann‐Robertson-Walker (𝑭𝑹𝑾𝟒) metric with negative cosmological 
constant  ( −𝝀. )   

 

 

 

There also appears a parameter 𝑪 (or 𝒄𝟎) as an integration constant of Einstein 
Equation for 5D bulk.  C corresponds to the energy density  of the 4D boundary 
theory. 

 

We consider the effect of 𝝀 and C to the 4D boundary theory by studying the, 
glueball spectrum, Entanglement Entropy by using the holography of the 5D bulk. 

 

We find that there is an phase transition of 4D boundary theory at critical  C. 
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5D bulk 
5D  bulk metric is obtained  in the following ansatz,  

 𝒅𝑠5
2 =

𝒓𝟐

𝑹𝟐
−𝒏 𝒓, 𝒕 𝟐𝒅𝒕𝟐 + 𝑨(𝒓, 𝒕)𝟐𝒂𝟎

𝟐 𝒕 𝜸𝒊𝒋 𝒙 𝒅𝒙𝒊𝒅𝒙𝒋 +
𝑹𝟐

𝒓𝟐
𝒅𝒓𝟐 

R:  constant  ( 𝑨𝒅𝑺𝟓 radius) 

We will find 𝒏 𝒓, 𝒕  and 𝑨(𝒓, 𝒕) which satisfies  

 𝒏 𝒓, 𝒕 → 𝟏,   𝑨 𝒓, 𝒕  → 𝟏     for  𝒓 → ∞,    

 

The 4D boundary (𝑟 → ∞) metric becomes 𝑭𝑹𝑾𝟒 metric. 

                       𝒅𝒔𝟒
𝟐 = −𝒅𝒕𝟐 + 𝒂𝟎

𝟐 𝒕 𝜸𝒊𝒋 𝒙 𝒅𝒙𝒊𝒅𝒙𝒋 

               𝒂𝟎 𝒕 : scale factor 

              𝜸𝒊𝒋 𝒙 = 𝜹𝒊𝒋 𝟏 +
𝒌

𝟒
𝜮𝒊=𝟏
𝟑 𝒙𝒊

𝟐 −𝟐

        (𝒌 = 𝟎,  ±𝟏) 

        We consider 𝒌 = −𝟏 (negative curvature) case 

 

  

 

 

 

       

 

 

 

    

     



Einstein Equation for 5D bulk   

𝒂𝟎 𝒕 ,  𝑨 𝒓, 𝒕  and 𝒏(𝒓, 𝒕) are determined by 5D  Einstein Equation. 

                            𝑹𝑴𝑵= −𝚲𝒈𝑴𝑵  (𝑴,𝑵 = 𝟎⋯𝟓)      𝚲 =
𝟒

𝐑𝟐
 

 

With the following ansatz,    
𝟏

𝒂 𝟎(𝒕)

𝒅 𝒂𝟎 𝒕 𝑨 𝒓,𝒕

𝒅𝒕
=

𝒓

𝑹
𝒏(𝒓, 𝒕)     (P. binetruy, et al.  

2000)   (D. Langlois’ 2003) 

the 5D Einstein Equation becomes  

    
𝒂 𝟎(𝒕)

𝒂𝟎(𝒕)

𝟐
−

𝟏

𝒂𝟎
𝟐(𝒕)

= −
𝒓𝟐

𝑹𝟒
𝑨(𝒓, 𝒕)𝟐 +

𝒓

𝑹

𝒓

𝑹
𝑨 𝒓, 𝒕

′ 𝟐

+
𝑪𝑹𝟐

𝒂𝟎
𝟒(𝒕)𝒓𝟐𝑨𝟐(𝒓,𝒕)

    

            ( •=
𝝏

𝝏𝒕
  and ´=

𝝏

𝝏𝒓
  )    

  C is given as an integral constant and it is called  “ holographic dark 
radiation” . 



Friedman equation 
 

Furthermore, we impose  the Friedman equation for boundary 
𝑭𝑹𝑾𝟒   

         

       𝒅𝒔𝟒
𝟐 = −𝒅𝒕𝟐 + 𝒂𝟎

𝟐 𝒕 𝜸𝒊𝒋 𝒙 𝒅𝒙𝒊𝒅𝒙𝒋              

 

        
𝒂 𝟎(𝒕)

𝒂𝟎(𝒕)

𝟐
−

𝟏

𝒂𝟎
𝟐 𝒕

= −𝝀(𝒕)         𝝀(> 𝟎) : a  cosmological constant  

 

We assume that  time evolution of 𝝀 𝒕  and 𝒂𝟎 𝒕  is very slow.  

                  

                  𝝀 (𝒕)  ∼ 𝟎,       
𝒂 𝟎 𝒕

𝒂𝟎 𝒕
∼ 𝟎  

 



5D bulk metric 
 

Then, we can get the  𝑨(𝒓, 𝒕) and 𝒏(𝒓, 𝒕)  as follows 

𝑨 = 𝟏 +
𝒓𝟎

𝒓

𝟐 𝟐

+ 𝒄𝟎
𝑹

𝒓

𝟒

𝟏/𝟐

      𝒏 =
𝟏+

𝒓𝟎
𝒓

𝟐 𝟐

−𝒄𝟎
𝑹

𝒓

𝟒

𝑨
 

       

     𝒄𝟎 ≡ 𝐂𝐑𝟐/(𝟒𝒂𝟎
𝟒)  : energy density of dual 4D Yang-Mills theory 

     𝒓𝟎 ≡
𝑹𝟐

𝟐
𝝀  :  cosmological constant of boundary 4d space-time.  

(K.Ghoroku and A. Nakamura  2012) 

We will use 𝒄𝟎 and 𝒓𝟎  instead of 𝑪 and 𝝀.  

 

Since we assume  𝜆 ∼ 𝟎   and        
𝒂 𝟎 𝒕

𝒂𝟎 𝒕
∼ 𝟎    

      𝒄𝟎, 𝒓𝟎 ∼  constant 

 



5D bulk (𝒄𝟎 ≥ 𝟎 , 𝒓𝟎 = 𝟎) 

When 𝒓𝟎 = 𝟎 (4D flat boundary metric ) and  𝒄𝟎 ≥ 𝟎,  5D  bulk 
metric becomes  

 𝒅𝑠5
2 =

𝒓𝟐

𝑹𝟐
−

𝟏−𝒄𝟎
𝑹

𝒓

𝟒 𝟐

𝟏+𝒄𝟎
𝑹

𝒓

𝟒 𝒅𝒕𝟐 + 𝟏 + 𝒄𝟎
𝑹

𝒓

𝟒
𝒅𝒙𝒊𝒅𝒙𝒊 +

𝑹𝟐

𝒓𝟐
𝒅𝒓𝟐 

 

By changing coordinates as       𝒓 = 𝒓 𝟏 +
𝑹𝟒

𝒓𝟒
𝒄𝟎 

The above metric becomes 5D AdS-Schwarzschild black hole 

𝒅𝒔𝟓
𝟐 =

𝒓 𝟐

𝑹𝟐
−𝒇 𝒓 𝒅𝒕𝟐 + 𝒅𝒙𝒊

𝟐
+

𝑹𝟐𝒅𝒓 𝟐

𝒓 𝟐𝒇 𝒓 
         𝒇 𝒓 = 𝟏 −

𝟒𝑹𝟒𝒄𝟎

𝒓 𝟒
 

 

Thus  𝒄𝟎 cotributes to the temperature.  



5D bulk  (𝒄𝟎 ≥ 𝟎, 𝒓𝟎 ≥ 𝟎) 
5D  bulk solution becomes 

 𝒅𝑠5
2 =

𝒓𝟐

𝑹𝟐
−𝒏(𝒓)𝟐𝒅𝒕𝟐 + 𝑨(𝒓)𝟐𝒂𝟎

𝟐 𝒕 𝜸𝒊𝒋 𝒙 𝒅𝒙𝒊𝒅𝒙𝒋 +
𝑹𝟐

𝒓𝟐
𝒅𝒓𝟐 

𝑨(𝒓) = 𝟏 +
𝒓𝟎

𝒓

𝟐 𝟐

+ 𝒄𝟎
𝑹

𝒓

𝟒

𝟏/𝟐

               𝒏 𝒓 =
𝟏+

𝒓𝟎
𝒓

𝟐 𝟐

−𝒄𝟎
𝑹

𝒓

𝟒

𝑨
 

 

At  𝒓 = 𝒓𝑯 ≡ 𝒄𝟎𝑹
𝟐 − 𝒓𝟎

𝟐 𝟏/𝟐
,     𝒈𝒕𝒕 ∝ 𝒏 𝒓𝑯 = 𝟎. 

 

When 𝒄𝟎 >
𝒓𝟎
𝟒

𝑹𝟒
,   there is an “event horizon” at 𝒓 = 𝒓𝑯  and the 

Hawking temperature  𝑻𝑯 is given by   

                 𝑻𝑯 =
𝒓𝑯 𝟏+

𝒓𝟎
𝟐+ 𝒄𝟎𝑹

𝟐

𝒓𝑯
𝟐

𝝅𝑹𝟐𝑨 𝒓𝑯
   

 

 

  



Hawking Temperature 
Hawking temperature  𝑻𝑯    

                 𝑻𝑯 =
𝒓𝑯 𝟏+

𝒓𝟎
𝟐+ 𝒄𝟎𝑹

𝟐

𝒓𝑯
𝟐

𝝅𝑹𝟐𝑨 𝒓𝑯
       𝒓𝑯 ≡ 𝒄𝟎𝑹

𝟐 − 𝒓𝟎
𝟐 𝟏/𝟐

 

 

 

As 𝒄𝟎 (energy density)  becomes large,    𝑻𝑯 increases. 

 

As 𝒓𝟎 (cosmological constant)  becomes large,   𝑻𝑯 decreases. 

 

At 𝒄𝟎 = 𝒓𝟎
𝟒/𝑹𝟒,    𝑻𝑯 = 𝟎. 

Thus  at 𝒄𝟎 =
𝒓𝟎

𝑹𝟒
,    there is a phase transition between 

confinement phase and deconfinement phase. 

 

 

  



5D bulk  (𝒄𝟎 ≥ 𝟎, 𝐫𝟎 ≥ 𝟎  ) 

When 𝟎 ≤ 𝒄𝟎 ≤
𝒓𝟎
𝟒

𝑹𝟒
,     𝒓𝑯 ≡ 𝒄𝟎𝑹

𝟐 − 𝒓𝟎
𝟐 𝟏/𝟐

   is not a real number 

and there is no “event horizon”  

 

↔ Dual 4D  field theory is in the “confinement  phase”. 

  Stable Glueball spectrum  by the 5D bulk metric fluctuation  
 

. 

 



Glueball mass spectrum 
  

Glueball spectrum can be obtained by the fluctuation 𝒉𝒊𝒋(𝒕, 𝒙
𝒊, 𝒓)  

of the 5D bulk (𝒈𝑴𝑵).  (R.C. Brower, S.D.Mathur and C.I. Tan. 2003) 

      
𝟏

−𝒈
𝝏𝑴 −𝒈𝒈𝑴𝑵𝝏𝑵𝒉𝒊𝒋 = 𝟎 

 

By decomposing    𝒉𝒊𝒋(𝒙
𝝁, 𝒓) = 𝒑𝒊𝒋𝝌 𝒙𝝁 𝝓(𝒓) 

 

The  equation of 4D part  𝝌 𝒙𝝁   is given by   
𝟏

𝒈𝟒
𝝏𝝁 𝒈𝟒𝒈

𝝁𝝂𝝏𝝂𝝌 𝒙𝝁 = 𝒎𝟐𝝌(𝒙𝝁) 

 

m:   Glueball mass 



Glueball mass spectrum  

 

Equation for  𝝓 𝒓  becomes  

𝝏𝒓
𝟐𝝓+ 𝒈𝟐 𝒓 𝝏𝒓𝝓+

𝑹

𝒓

𝟒 𝒎𝟐

𝒏(𝒓)𝟐
𝝓 𝒓 = 𝟎      

                           𝒈 𝟐 𝒓 = 𝝏𝒓 𝒍𝒐𝒈
𝒓

𝑹

𝟓
𝒏(𝒓)𝑨(𝒓)𝟑   

 𝒎: glueball mass 



Glueball mass spectrum (𝒓𝟎 ≥ 𝟎,   𝒄𝟎 = 𝟎) 
First we consider the 𝒄𝟎 = 𝟎    case (analytic calculation). 

By defining 𝒙 ≡
𝒓

𝒓𝟎
  , equation for 𝝓(𝒓)  is given by  

 𝝏𝒙
𝟐𝝓+ 𝒈𝟐 𝒙 𝝏𝒙𝝓+

𝑹𝟒𝒎𝟐

𝒓𝟎
𝟐𝒙𝟒𝑨𝟐(𝒙)

𝝓 = 𝟎 

Where   𝒈𝟐 𝒙 =
𝟏

𝒙
𝟓 −

𝟖

𝒙𝟐𝑨 𝒙
           𝑨 𝒙 = 𝟏 +

𝟏

𝒙𝟐
 

 

𝝓 becomes normalizable by choosing 𝒎 as  

          𝒎𝟐 = −𝝀 𝑵 + 𝟏 𝑵 + 𝟒     𝝀 =
𝟒𝒓𝟎

𝟐

𝑹𝟒
       𝑵 = 𝟎, 𝟏, 𝟐⋯ 

The  lowest glueball mass (N=0) is finite as  

           𝒎𝒈 = 𝟐 𝝀 

This was obtained by the field theory  by  C.Fronsdal, 1979  



Glueball mass spectrum (𝒓𝟎 ≥ 𝟎,   𝒄𝟎 ≥ 𝟎) 

Next we consider the 𝒓𝟎 ≥ 𝟎, and 𝒄𝟎 ≥ 𝟎  case and  will show 
that the lowest glueball mass 𝒎𝒈  decreases as 𝒄𝟎  becomes large.  

 

 

 

equation for  𝝓 𝒓   

𝝏𝒓
𝟐𝝓+ 𝒈𝟐 𝒓 𝝏𝒓𝝓+

𝑹

𝒓

𝟒 𝒎𝟐

𝒏(𝒓)𝟐
𝝓 𝒓 = 𝟎      

                           𝒈 𝟐 𝒓 = 𝝏𝒓 𝒍𝒐𝒈
𝒓

𝑹

𝟓
𝒏(𝒓)𝑨(𝒓)𝟑   

  



Glueball mass spectrum (𝒄𝟎 > 𝟎) 

 By factorizing 𝛟 as             𝝓 = 𝒆−
𝟏

𝟐
∫ 𝒅𝒓𝒈 𝟐 𝒓 𝒇(𝒓) 

 

The equation for  𝑓 𝒓  becomes the Schrodinger equation 

   −𝝏𝒓
𝟐𝒇 + 𝑽 𝒓 𝒇 = 𝟎 

 

with the potential V(r)   

 𝑽 =
𝟏

𝟒
𝒈 𝟐
𝟐 +

𝟏

𝟐
𝝏𝒓𝒈 𝟐 −

𝒎𝟐

𝒏𝟐
𝑹

𝒓

𝟒
 

 

 

 



Glueball mass spectrum (𝒄𝟎 > 𝟎) 

WKB approximation gives  

∫ −𝑽𝒅𝒓 = 𝑵 +
𝟏

𝟐
𝝅    𝑵 = 𝟎, 𝟏, 𝟐⋯ 

 

V=
𝟏

𝟒
𝒈 𝟐
𝟐 +

𝟏

𝟐
𝝏𝒓𝒈 𝟐 −

𝒎𝟐

𝒏 2
𝑹

𝒓

𝟒
 

 

 

The lowest glueball mass 𝑚𝑔 is given when N=0  in the above 

formula.  The relation between 𝒎𝒈 and 𝒄𝟎 is calculated 

numerically. 

For critical  𝒄𝟎 =
𝒓𝟎
𝟒

𝑹𝟒
,   

Lowest glueball mass 𝒎𝒈  becomes zero. 

 



Glueball as an rotating closed string 

Glueball with large quantum number:   a rotating  string in the 
bulk  

 

 

Bulk metric:     𝒅𝒔𝟓
𝟐 =

𝒓𝟐

𝑹𝟐
−𝒏(𝒓)𝟐𝒅𝒕𝟐 + 𝑨(𝒓)𝟐𝒅𝒔𝟑

𝟐 +
𝑹𝟐

𝒓𝟐
𝒅𝒓𝟐 

                       where 𝒅𝒔𝟑
𝟐 = 𝐚𝟎

𝟐 𝐭
𝐝𝐩𝟐

𝟏+𝐩𝟐
+ 𝐩𝟐 𝐝𝜽𝟐 + 𝐬𝐢𝐧𝟐 𝜽 𝒅𝝓𝟐  . 

 p radial coordinate in 3d space in 𝐹𝑅𝑊4 

 

The string world sheet coordinates are taken as  𝝉, 𝝈 = (𝒕, 𝒓).  

The Ansatz of the closed string  rotating around  𝑺𝟐   are   𝜽 = 𝜽(𝒓)   
and  𝝓 = 𝝎𝒕. 

 

 



Spin and Energy 

 Lagrangian of a closed string  

𝑳 = −
𝟏

𝟐𝝅𝜶′
∫ 𝒅𝒓

𝒓𝟐

𝑹𝟐 𝑨
𝟐

𝒏𝟐

𝑨𝟐
−𝝎𝟐𝒑𝟐 𝐬𝐢𝐧𝟐 𝜽𝒂𝟎

𝟐 𝒕 𝜽𝟐𝒑𝟐𝒂𝟎 𝒕 +
𝟏

𝑨𝟐
𝑹

𝒓

𝟒

    

 

Then, we can obtain the spin and Energy as follows. 
 

Spin      𝑱𝒔 =
𝝏𝑳

𝝏𝝎
=

𝟏

𝟐𝝅𝜶′
 ∫ 𝒅𝒓

𝒂𝟎
𝟐𝒓𝟐

𝑹𝟐
𝑨𝟐𝝎𝒑𝟐 𝒔𝒊𝒏𝟐 𝜽

𝜽𝟐𝒑𝟐𝒂𝟎 𝒕 +
𝟏

𝑨𝟐
𝑹

𝒓

𝟒

𝒏𝟐

𝑨𝟐
−𝝎𝟐𝒑𝟐 𝒔𝒊𝒏𝟐 𝜽𝒂𝟎

𝟐 𝒕
 

 

Energy    𝑬𝒔 =
𝝎𝝏𝑳

𝝏𝝎
− 𝑳 =

𝟏

𝟐𝝅𝜶′
 ∫ 𝒅𝒓

𝒓𝟐

𝑹𝟐
𝒏𝟐

𝜽′𝟐𝒑𝟐𝒂𝟎 𝒕 +
𝟏

𝑨𝟐
𝑹

𝒓

𝟒

𝒏𝟐

𝑨𝟐
−𝝎𝟐𝒑𝟐 𝒔𝒊𝒏𝟐 𝜽𝒂𝟎

𝟐 𝒕
 



Regge Behavior  
By solving the equation of motion numerically, we can get  a 
Regge behavior 

 

              𝑱𝒔 = 𝜶𝒈𝒍𝒖𝒃𝒂𝒍𝒍𝑬𝒔
𝟐 . 

 

  

 

 

We calculate the relation between String tension  𝒌 =
𝟏

𝟖𝜶𝒈𝒍𝒖𝒆𝒃𝒂𝒍𝒍
   

and  𝒄𝟎 . 

For the critical  𝒄𝟎 =
𝒓𝟎
𝟒

𝑹𝟒
,    

string tension becomes zero. 
 



Entanglement Entropy 
We consider the entanglement entropy on the 4D 𝐹𝑅𝑊 boundary  

whose  entangling region is the 3D sphere  with the radius of 𝒑𝟎 

 

Entanglement Entropy 𝑺𝑬𝑬 :. 

          𝑺𝑬𝑬 = −𝑻𝒓(𝝆𝑨𝒍𝒏 𝝆𝑨) 

 

 𝝆𝑨 = 𝑻𝒓𝑩𝝆𝒕𝒐𝒕 :  reduced density matrix  

                      

 𝝆𝒕𝒐𝒕 = 𝝍 〈𝝍|  :density matrix of the total system                

                            

 

             

                               

 

 

 

 

  

  



Entanglement Entropy by AdS/CFT 

   Entanglement Entropy by  AdS/CFT  (S. Ryu and T. Takayanagi '06)          

                                

                                      𝑺𝑬𝑬 =
𝑺𝑨𝑹𝑬𝑨

𝟒𝑮𝑵
(𝟓)  

                  𝑺𝑨𝒓𝒆𝒂 :  Area of the minimal surface in 5D bulk space 

                          𝑮𝑵
(𝟓)

  :  Newton constant in 5D bulk 

     

 

 

 

 

              

 



Entanglement Entropy 

By changing coordinates as  𝒛 = 𝒓𝒄
𝟐/𝒓  (𝒓𝒄 ≡ 𝒄𝟎𝑹

𝟒 + 𝒓𝟎
𝟒

𝟏

𝟒) , The spatial 
part of the bulk metric becomes   

 𝒅𝒔𝒔𝒑𝒂𝒄𝒆
𝟐 =

𝟏

𝑹𝟐
𝒛𝟐 + 𝟐𝒓𝟎

𝟐 +
𝒓𝒄
𝟐

𝒛𝟐

𝟐

𝒂𝟎
𝟐 𝒕 𝜸(𝒑)𝟐 𝒅𝒑𝟐 + 𝒑𝟐𝒅𝜴𝟐

𝟐 +
𝑹𝟐

𝒛𝟐
𝒅𝒛𝟐 

 𝜸(𝒑) ≡
𝟏

𝟏−
𝒑𝟐

𝟒

 

𝒑 ≡ 𝜮𝒊=𝟏
𝟑 𝒙𝒊

𝟐
𝟏

𝟐
   : the radial coordinate on the 4D boundary (𝑭𝑹𝑾𝟒)  

From the Ryu-Takayanagi conjecture ,  we consider the minimal surface 
p(z) in the  bulk.  
S. Ryu and T. Takayanagi ‘06 



Entanglement enteropy 

𝑺𝑨𝑹𝑬𝑨
𝟒𝝅

=  𝒑 𝒛 𝟐𝑩 𝑩𝒑′ 𝒛 𝟐 +
𝑹𝟐

𝒛𝟐

𝒛(𝒑=𝟎)

𝟎

 

 

𝑩 ≡
𝒂𝟎
𝟐𝜸𝟐

𝑹𝟐
𝒛𝟐 +

𝒓𝒄
𝟒

𝒛𝟐
+ 𝟐𝒓𝟎

𝟐  

The minimal surface  solution p(z) is obtained numerically as 
follows 



Entanglement Entropy 
 The minimal surface solution p(z) can be  expanded in terms of z. 

  

𝒑(𝒛) = 𝒑𝟎 + 𝒑𝟐𝒛
𝟐 + 𝒑𝟒𝒛

𝟒 + 𝒑𝟒𝑳𝒛
𝟒 𝒍𝒐𝒈 𝒛 +⋯   

 where   𝒑𝟐 = −
𝟏− 𝒑𝟎

𝟐/𝟒
𝟐
𝑹𝟒

𝟐𝒂𝟎
𝟐𝒑𝟎𝒓𝒄

𝟐 ,         𝒑𝟒𝑳 = −
𝟏−

𝒑𝟎
𝟐

𝟒

𝟐

𝑹𝟖

𝟒𝒂𝟎
𝟐𝒑𝟎𝒓𝒄

𝟖

𝒂𝟎 

𝒂𝟎

𝟐
 

 

𝒑𝟎:   size of the entangling surface 

 𝒑𝟒 : arbitrary  constants 

     

     

 

For   
𝒂 𝟎 𝒕

𝒂𝟎 𝒕
~𝟎,     the coefficient of log term   𝒑𝟒𝑳 ∼ 𝟎 



Entanglement Entropy 
Then, we can get  the Entanglement Entropy  𝑺𝑬𝑬  as   

    𝑺𝑬𝑬= 𝜸𝟏
𝑨𝒓𝒆𝒂𝑨

𝟒𝝅𝝐𝟐
+ 𝜸𝟐𝒍𝒐𝒈(

𝒑𝟎

𝝐
) + 𝑺𝒇𝒊𝒏𝒊𝒕𝒆        

   𝝐 ≪ 𝟏: UV cutoff 

  𝜸𝟏 =
𝟐𝑵𝟐𝒓𝒄

𝟒

𝑹𝟒
      

  𝜸𝟐= 𝑵𝟐 𝟏 + 𝑨𝒓𝒆𝒂𝑨
𝒂𝟎 

𝒂𝟎

𝟐
   :independent of UV cutoff 𝝐 

 

𝑨𝒓𝒆𝒂𝑨 ≡ 𝟒𝝅 𝒂𝟎 𝒕 𝜸 𝒑𝟎
𝟐𝒑𝟎

𝟐      : proper area of 4D FRW space 

𝒅𝒔𝑭𝑹𝑾𝟒

𝟐 = −𝒅𝒕𝟐 + 𝒂𝟎
𝟐 𝒕 𝜸 𝒑 𝟐 𝒅𝒑𝟐 + 𝒑𝟐𝒅𝜴𝟐

𝟐         𝜸(𝒑) ≡
𝟏

𝟏 −
𝒑𝟐

𝟒

 



Entanglement Entropy 

the Entanglement Entropy  𝑺𝑬𝑬   

    𝑺𝑬𝑬= 𝜸𝟏
𝑨𝒓𝒆𝒂𝑨

𝟒𝝅𝝐𝟐
+ 𝜸𝟐𝒍𝒐𝒈(

𝒑𝟎

𝝐
) + 𝑺𝒇𝒊𝒏𝒊𝒕𝒆        𝝐 ≪ 𝟏: UV cutoff 

 𝜸𝟐= 𝑵𝟐 𝟏 + 𝑨𝒓𝒆𝒂𝑨
𝒂𝟎 

𝒂𝟎

𝟐

   

 

 

The second term of 𝜸𝟐 is the effect of the curvature of 𝐹𝑅𝑊4 
(J. Maldacena, G.L. Pimentel 2013) 

For   
𝒂 𝟎 𝒕

𝒂𝟎 𝒕
≪ 𝟏,   𝜸𝟐 ∼ 𝑵𝟐 : degree of the freedoms in the dual field 

theory. 



Entanglement entropy 

Next we consider the UV finite term 𝑺𝒇𝒊𝒏𝒊𝒕𝒆. 

    𝑺𝑬𝑬= 𝜸𝟏
𝑨𝒓𝒆𝒂𝑨
𝟒𝝅𝝐𝟐

+ 𝜸𝟐𝒍𝒐𝒈(
𝒑𝟎
𝝐
) + 𝑺𝒇𝒊𝒏𝒊𝒕𝒆 

The Hawking temperature  𝑻𝑯  is given by  𝑻𝑯 =
𝒓𝑯 𝟏+

𝒓𝟎
𝟐+ 𝒄𝟎𝑹

𝟐

𝒓𝑯
𝟐

𝝅𝑹𝟐𝑨 𝒓𝑯
 

By numerical calculations with fixed large size 𝑝0, we find that     

  

 𝑺𝒇𝒊𝒏𝒊𝒕𝒆 ∝ 𝑻𝑯
𝟑    at large  𝑻𝑯 .  

 

This is the same behavior as  

the thermal entropy in 4D theory.  

  



                          Summary 
 ・ We consider 5-dimensional bulk  whose 4D boundary has  𝐹𝑅𝑊4 metric with 
negative cosmological constant −𝝀.   

 ・ There is also a parameter 𝑐0 corresponding to the energy density of 4D boundary 
field theory.   

 ・ When  cosmological constant is zero 𝒓𝟎 ≡
𝑹𝟐

𝟐
𝝀 = 𝟎 ,  5D bulk becomes AdS5-

Schwarzschild Black hole.   

・ When 𝟎 ≤ 𝒄𝟎 <
𝒓𝟎
𝟒

𝑹𝟒
,  dual UV field theory is in the “confinement  phase”.  

           The lowest glueball mass becomes massive.    

           Regge behavior by closed string calculation.   

・ When 
r0
4

R4
≤ 𝒄𝟎,   an “event horizon” appears  and dual field theory is in the 

deconfinement  phase. 

                    The lowest glueball mass becomes zero,   

                    Holographic Entanglement Entropy becomes Thermal Entropy 

 

 

 

 

 

 


