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Introduction

@ In gauge/gravity correspondence

It is not clear how 10D (1 1D) background geometry in
string theory is realized in corresponding gauge theory

|OD(11D) geometry should be emergent in gauge theories



Motivation

@ A nice example of emergent geometry was given by
LLM geometry and chiral primary operators in N=4 SYM

[Lin-Lunin-Maldacena, Berenstein, Takayama-Tsuchiya]

€ What about other gauge theories 722

@ Generic description of 10D geometry in terms of
gauge theory DOF is not known yet.

€ We need to construct more examples to find a general
principle for gauge theoretic description of geometry.



Our setup and result
@ We consider gauge theories with SU(2|4) symmetry.

N=4 SYM on RxS3/Z,
Gauge theories with SU(2|4) sym — N=8 SYM on RxS?2

Plane wave (BMN) matrix model

@ Dual geometries for these theories were constructed by Lin-Maldacena
LM geometry is characterized by a certain electrostatic system.

dual
Gauge theories
[ LM geometry ] ” [ with SU(2|4) ]

\ ,Localization

[LLM, LM]
(our result)
Electrostatic system

@ Applying localization, we find /4 BPS sector of gauge theories are also
described by the same electrostatic system as the gravity side
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2. Gauge theories with SU(2|4) symmetry



Gauge theories with SU(2|4) symmetry

4D N=4 SYM on RxS3 jTruncation of KK modes on S3

~

N=4 SYM on RxS3/Z,
N=8 SYM on RxS?
Plane wave matrix model (PVWWMM)

€ Common features

* Massive

" SU(2[4) (16 SUSY) I Holonomy
* Many discrete vacua Monopoles

Fuzzy spheres

* Gravity dual for theory around each vacuum [Lin-Maldacena]
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€ Mass deformation of BFSS matrix model

@ SU(2/4) symmetry = 16 SUSYSO(3) x SO(6)
t X, X,

@ Vacua : fuzzy sphere (representation of SU(2) generators)

Nés) dim irrep

A . multiplicity
[N

Irreducible decomposition Labelled by {(NQ(S), Nés))} & A



4. Lin-Maldacena geometry



Lin-Maldacena geometry

€ SU(2|4) symmetric solution in 1A SUGRA
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« Solution depends only on a single function V (7, 2)

 EOM = V(r,z) satisfies the Laplace equation in a certain axially
symmetric electrostatic system



Electro static system for LM geometry

@ Dual of PWWMM is determined by solving Laplace eq of following system

V4
AV(r,z)=0 ]
A conducting disks
z-coodinate of disks d;, — ds_1 ~ Nés)
{ Charges of diskes Qg ~ NQ(S)

NS5 and D2 charges

LT

Infinitely large conducting plate

@ Geometry is labbled by {(N{*, N{*)} A <&I:1 with vacua of PWMM



Disk configurations for the other gauge theories

T ~
~
) V-0 (z— £tx0) () Periodic B.C. (1) Two infinite plates
D2-brane solution D2-brane + T-dual NS5-brane solution
SYM on RxS? SYM on RxS3/Z, Little string theory on RxS>
B.C & Theory

Disk config € Vacuum



4. Localization in gauge theories and
emergent LM geometry

dual
[ LM geomesries ] = [ i SUGH) ]

N\ 4

[LLM, LM] Localization
Electrostatic systems




The sector we considered

@ LM geometry is locally R x S* x S°
Electrostatic problem is defined here
C My D

® In PWMM, we consider ¢(t) := X3(t) + 1 Xo(1)

SN

SO(3) scalar SO(6) scalar
From symmetry, we expect ¢(t) describes M (r,2)

{ Actually we considered ¢(t) = X3(t) + ¢(Xo(t) cost + Xg(t)sint) J

to preserve '/ supersymmetries.

@ \We consider sector made of onlyp . (Tr(¢™)---)



Localization on RxSP

€ Usually, people consider completely compact space like SP to perform
the localization computation. (to have finite moduli integral)

@ However, localization is also useful for theories on RxSd and
can be done in almost same way as theories on S¢

In our case, (1) construct SUSY s.t. Q¢ =0, ) [Pestun]
(1) add —tQV to the action, where V = QU
(Il) path integral is dominated by the saddle of V.

@ Only difference = Need to fix B.C. for the R direction

Our boundary condition :
All fields approaches to vacuum configuration

Path integral with this B.C. defines theory around fixed vacuum.



Result of Localization (for PWMM)

(Tr(¢™)--+) = (Tr(La +iM)" - )mm
4 N

VEV of PWMM around VEV of the following matrix integral and

a fixed vacuum
M = @ (10 © M)

!

N x N§ Hermitian matrix

A NG

(s) 2
/H qu«S%Zl loop6 g? ZS%N Asi

s=1 1=1
N NG

{(2J +2) + (qsi — @¢5)*H(2J)? + (qsi — @25)°}
Z1-loop = H 11 H H [ {(2J +1)2 + (qsi — q15)}? ]

s,t=1 J =1 j=1

N

dsi : eigenvalues of M Multi matrix model with /A matrices



Saddle point approximation

In appropriate large-N limit where SUGRA approximation is good,
the matrix integral can be evaluated by the saddle point approximation

The matrix integral is described as a classical theory defined by

A

A on(®)
2N s 1 L —=Y) (s s
S=3 / doa’p (@) = 53 / dzxdylog tanh’ %M () (y)

s=1 s=1

A s t s t
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p(s)(x) = Z 6(qsi — ) : Eigenvalue density for each s

Claim : this theory is equivalent to the electrostatic system on gravity side



@ Classical action for the electrostatic system constant

/ charge density
v

1
S:/—aiv2+ / V —cs)ps
2( ) ; s—thdisk( )

{ Variation of V' mmm) AV = Z ps0(s — th disk)
Variation of 0s mmm) V =c; (on s-th disk)
Eliminating V' using EOM, we obtain S(p) = Z/pSA_lpt + -
s,t
In fact, this action coincides with the action of matrix integral !!!

charge densities < eigenvalue densities



For the other gauge theories

Eliminating |/, we can obtain EOM for 0 for gravity duals
of the other gauge theories.

?
o (dual of SYM on RxS2)
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/I

Exactly same EOM are obtained from the matrix integral on gauge theory side



Summary

= By applying localization to gauge theories with SU(2[4) symmetry,
we obtained multi-matrix integrals

* We found that eigenvalue density = charge density in LM geometry

= LM geometry can be reconstructed from eigenvalues in gauge theories

Emergent geometry !

Qutlook

= So far, we have studied only saddle point configuration (vacuum states)

Excitation in matrix integral < gravitons ?

* Double scaling limit ? PWMM — Little string !
|

[Ling-Mohazab-Shieh-Anders-Raamsdonk]



