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« Witten proposed the model to describe a
superconducting string in 80’s.

E. Witten, Nucl.Phys.B249, 557-592, 1985.
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Ner Nos /1¢, Ag,B:Parameters with positive sine

* |t has been found that this model has solitonic
solutions such as vortices and vortons.

e Several researchers has still studied this model,
and it has been used for physical application.

J.Kunz, E.Radu, and B.Subagyo, Gravitating vortons as ring solitons in
general relativity, Phys. Rev. D 87, 104022

J.Garaud, E.Radu, and M.S.Volkov, Stable Cosmic Vortons, Phys. Rev. Lett.
111,171602

* Strict conditions which ensure the existence of
solutions are yet not known even in the case of
straight line vortices.
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" Radius
Ao = 1.5, A, =10.0,m4 =1.0,n, =0.5,5 = 1.5

Y. Lemperiere,E. P. S. Shellard,
Vorton existence and stability,Phys.Rev.Lett, 91(2003)141601.

— The rotationally symmetric solutions

Ungauged model
L=0,0"0"¢+8,0°0"c —U
Ansatz o(r) = ¢(r)e'™?

o(r) = a(r)ei(thrkz)

m:winding number

Boundary conditions ¢(0) =0 ¢(c0) =14
a'(0) =0

Equations
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Only o at the infinity has the problem
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First order:Same as the condition of zeroth order
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Higher orders:
Condition of second order ensures their analyticity
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Asymptotic expansion at the infinity
oc=o01(r—1)+oa(x—1)*+o3(x—1)°+--

L Substitute this expansion
for the equation of o at the infinity
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Gauged model
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g:Gauge coupling constant
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—The non-rotationally symmetric solutions

o(r) = p(r)e™? — 0)e'™Y
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Consider the minimization of the energy
on the Cartesian coordinate(x, y)
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Simulated Annealing method

M.Hale, O.Schwindt, TWeidig
Simulated annealing method for topological solitons,Phys. Rev. E 62, 4333 (2000)

Randomly perturb f = fiow

¥

positive
Accept change Change of Energy
f = frew - AE = E(f) — E(Jnew)
‘ negative
Yes

Random Number:r

Probability function:q O0<r<gq
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A “multi-band” extension of the model Summary and further outlooks
L= (0,6)*(0"6) + (0,0)*(0"c) + (D) (0"4)) For the rotationally symmetric solutions
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A a2 ov2 Ao o ava Ap o 9o * the conditions for the parameters which ensure the
- Z(|¢| — )" — Z(|‘7| —15)" = Z(M = 7y) existence of solutions were obtained by performing the
21 121 112 21 12 21 112 22 Ao 4 Ay 4 ; asymptotic expansion.
~ AR = Aalellol” = Palgllol” — At lol+ PR | ' | * the solutions were obtained in both the ungauged model
Ansatz Boundary conditions el () | and the gauged model, also with the higher winding number.
o(r) = ¢(r)e™ #(0) =0 ¢(c0) =1 o | -
a(fr) _ a(r)ei(‘*’“Hk"Z) o'(0) =0 o(o00) =0 T ] For the non-rotationally symmetric solutions
b(r) = w(r)ei(”¢t+sz) W' (0) =0 1h(c0) =0 Lk ] * the new solutions which have multi-center were obtained.
* more new structures may emerge when we take into
: 0z |- . account the gauge fields and much higher winding number.
Equations
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Ao ‘ ) . .
ro" 4o +r(w? — k2)o — 770(02 — )0 — BERou? — Brad?o — Pazoh? =0 the solutions were found in the ungauged model.
\ A¢ = 5.5, A =3.0,\y, = 2.0, = 10,7, = 1.0,n;, = 1.0 * these solutions might be used to describe a complex
rp” " 4wy — ki)Y — 777!)7"(1@2 — )Y — B 07 — Bi3d b — Bago?p = 0 B=10,B15 =15 By = 1.0, By3 = 0.5 structure of superconductors such as a gigantic

superconductor.




