Numerical studies on the early universe by large-scale numerical computations in the Lorentzian IIB matrix model

Yuta Ito (SOKENDAI)

In collaboration with

Jun Nishimura (KEK,SOKENDAI), Asato Tsuchiya (Shizuoka U.)

1. Introduction

Lorentzian version of the IIB matrix model

- A non-perturbative formulation of superstring theory
- \checkmark Eigenvalues of A_0 represent the "real time" coordinates.

$$\int S_b = -\frac{1}{4g^2} \operatorname{tr} \left[A_\mu, A_\nu\right]^2$$

$$\eta_{\mu\nu} = \operatorname{diag}\left(-1, 1, \cdots, 1\right)$$

[Ishibashi, Kawai, Kitazawa, Tsuchiya, Nucl. Phys. B 498 (1997) 467]

[Kim, Nishimura, Tsuchiya, Phys.Rev.Lett. 108 (2012) 011601]

 $A_0 \ll A_i$

G Fermion action

 $S_{\rm f} = {
m tr} \, \Psi_{\alpha} \left(\Gamma^{\mu} \right)_{\alpha\beta} \left[A_{\mu}, \Psi_{\beta} \right]$

 $t = \frac{1}{n} \sum_{i=1}^{n} \alpha_{k+i}$: time

 $\overline{A}_i(t)$: state of the universe at t

The extent of spacetime

 $R^{2}(t) = \frac{1}{n} \sum \operatorname{tr} \bar{A}_{i}^{2}(t)$

The moment of inertia tensor

 $T_{ij}(t) = \frac{1}{n} \operatorname{tr}\left(\bar{A}_{i}(t) \,\bar{A}_{j}(t)\right)$

Eigenvelues of $T_{ij}(t)$ represent the extent in each spatial direction.

5. Numerical result

 $\Box \underline{SSB from SO(d) to SO(3)}$

There exists a critical value N_c such that the SSB occurs for $N > N_c$.

10d bosonic IKKT model

$$= \operatorname{tr} \Psi_{\alpha} \left(\Gamma^{0} \right)_{\alpha\beta} [A_{0}, \Psi_{\beta}] + \operatorname{tr} \Psi_{\alpha} \left(\Gamma^{i} \right)_{\alpha\beta} [A_{i}, \Psi_{\beta}]$$
dominant at early times $A_{0} \gg A_{i}$
Pfaffian
$$\operatorname{Pf} \mathcal{M} (A) = \Delta (\alpha)^{2(d-1)} = \prod_{I < J} (\alpha_{I} - \alpha_{J})^{2(d-1)}$$
repulsive force between A_{0} eigenvalues
$$\cdot \text{ Time extends to infinity.}$$

$$\cdot \text{ Exponential expansion}$$
As a toy model,
$$\operatorname{Pf} \mathcal{M} (A) = 1$$

$$\Rightarrow \text{ Bosonic model}$$

$$\underline{J_{A} = \int \mathcal{D}A e^{iS_{b}}}$$

$$\begin{bmatrix} \text{Constraint}: \frac{1}{N} \text{tr } F_{\mu\nu} F^{\mu\nu} = 0 & \text{Gauge fixing}: \begin{bmatrix} A_0 = \text{diag} (\alpha_1, \alpha_2, \cdots, \alpha_N) \\ \alpha_1 < \alpha_2 < \cdots < \alpha_N \end{bmatrix}$$
$$\text{IR Cut off}: \frac{1}{N} \text{tr } A_i^2 = 1 & \Delta(\alpha)^2 = \prod_{I < J} (\alpha_I - \alpha_J)^2 : \text{FP determinant}$$

6d case $N_c \cong 34$ 1/N trA₀² ⊢⊟⊣ 4.5 (0.02475)*x -1.4601 ------ $N_c \cong 112$ 10d case 3.5 symmetric 1/N trA₀² broken-phase З phase Time extent 2.5 2 $\frac{1}{N} \operatorname{tr} A_0^2$ 1.5 0.5 250 100 150 200 50 Power-law expansion Ν 10d bosonic IKKT model Scaling of R(t) 35 N=256 30 -N=384 Expanding behavior of 3d space N=512 25 $R^2(t)/R^2(t_c)$ 20 ✓ at early times 15 $R\left(t
ight)\sim e^{\Lambda t}$ 10 transition ✓ at late times 2.5 -0.5 2 0.5 $R\left(t
ight)\sim t^{1/2}$ $(t-t_c)/R(t_c)$

Note: No need for any temporal cutoffs.

Partition function in simulations

$$Z_{b} = \int \mathcal{D}A_{i} \prod_{I=1}^{N} d\alpha_{I} \Delta (\alpha)^{2} \delta \left(\frac{1}{N} \operatorname{tr} F_{\mu\nu} F^{\mu\nu}\right) \delta \left(\frac{1}{N} \operatorname{tr} A_{i}^{2} - 1\right)$$

Bosonic 1-loop effect

<u>6. Summary</u>

- It turns out that the SSB from SO(d) to SO(3) occurs even in the bosonic IIB matrix model.
 - The time has a finite extent without any cutoffs.
 - There exists a critical matrix size N_c such that the SSB occurs for $N > N_c$.
- Scaling of R(t) is confirmed at late times, where the expanding behavior changes from exponential expansion into a power-law $(t^{1/2})$.
- \rightarrow It may be interpreted as the transition from inflation to radiation dominated FRW universe.