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T-duality

Geometrically, T-duality arises from compactifying a theory on a
circle with radius R, and such a theory describes the same
physics as a theory compactified on a circle with radius 1/R
with the winding mode and momentum mode exchanged.



Motivation

Doubled geometry:

A doubled torus with coordinates(x , x̃)
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Generalized geometry:
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In doubled formalism, half of the components obey the Dirichlet
boundary condition while the other half obey the Neumann
boundary condition. I.e. A D-brane and it’s T-dual can be
described simultaneously in doubled geometry–A doubled
D-brane.
In generalized geometry, D-branes are described by objects
called Dirac structures.
We conjecture that a doubled D-brane in doubled geometry is
equivalent to a Courant algebroid in generalized geometry.
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In doubled geometry (Hull et al.), the key component is a
2n × 2n-matrix H called a generalized metric which transform
as an O(n,n)-tensor:

H =

(
G − BG−1B BG−1
−G−1B G−1

)
,

and also an O(n,n)-invariant constant matrix L conveniently
chosen as

L =

(
0 In×n
In×n 0

)
.

Doubled coordinate is defined by XI = (X i , X̃i) where
X̃ i = (X̃a,X ν).



D-branes

Neumann boundary condition:

∂1X a|∂Σ = 0.

Dirichlet boundary condition:

δXµ|∂Σ = 0.

T-duality exchanges Dirichlet and Neumann boundary
conditions.



Doubled D-brane

On the doubled space, we can define the corresponding
projectors (Albertsson, Kimura and Reid-Edwards, 2009):

I Dirichlet projector: Π,
Neumann projectors: Π̄,

I Projectors by definition: Π + Π̄ = I,
I The projectors need to satisfy the following conditions

1. Normal condition: Π2 = Π, and Π̄2 = Π̄.
2. Orthoganality condition: Π̄HΠ = 0.
3. Integrability condition: Π̄K

IΠ̄
L
J∂[K Π̄M

L] = 0.



Boundary conditions

The Dirichlet projector is used to express the Dirichlet boundary
conditions in a covariant way:

Πt∂0X|∂Σ
= 0,

While the Neumann projectors give rise to Neumann boundary
conditions:

Π̄tH∂1X|∂Σ
= 0.

Here the self-duality condition is used to eliminate half of the
degrees of freedom:

∂αXI = ε β
α LIJHJK∂βXK .



T-duality transformation

Let h ∈ O(n,n; Z ).
The doubled coordinate, generalized metric and
Dirichlet/Neumann projectors transform under T-duality via

HIJ 7→ H̃IJ = (h−1Hh)IJ ,

XI 7→ X̃I = (h−1)I
JX

J ,

Π 7→ Π̃ = h−1Π h,

Π̄ 7→ ˜̄Π = h−1Π̄ h.



2-Dimensional Example

Consider a 2-dimensional model with

H =

(
R2 0
0 R−2

)
, L =

(
0 1
1 0

)
and double coordinates X = (x , x̃)t .
The possible allowed Dirichlet projectors are

Π(1) =

(
1 0
0 0

)
, Π(2) =

(
0 0
0 1

)
= Π̄(1).

The self-duality condition ∂αXI = ε β
α LIJHJK∂

βXK gives

∂0x = R−2∂1x̃ , ∂0x̃ = R2∂1x .



Case I: Solving the boundary conditions along with the
self-duality condition for Π(1), we find

∂0x = 0, ∂1x̃ = 0,



Case I: Solving the boundary conditions along with the
self-duality condition for Π(1), we find

∂0x = 0, ∂1x̃ = 0,



Case II: Solving the boundary conditions along with the
self-duality condition for Π(2), we find

∂1x = 0, ∂0x̃ = 0,
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Generalized geometry

Generalized geometry was first developed by Hitchin to unify
both symplectic geometry and complex geometry.
Generalized geometry has been of great interest due to
emerging connections with areas of mathematical physics, for
instance:

I Relation with string theory, ex. B-field symmetries,
I Connection with Mirror symmetry
I Adaptation of T-duality to generalized geometry

Reference:
Hitchin math.DG/0209099
Gualtieri math.DG/0401221
Cavalcanti math.DG/0501406



Generalized tangent space

Let M be a manifold. TM ⊕ T ∗M is called the Generalized
tangent space of M.
There are two natural operations on TM ⊕ T ∗M:
(1) TM ⊕ T ∗M has a natural symmetric non-degenerate bilinear
form defined by

〈X + ξ,Y + η〉 =
1
2

(ıY ξ + ıXη)

where X ,Y ∈ Γ(TM), and ξ, η ∈ Γ(T ∗M).
(2) Courant bracket:
The canonical bracket originally introduced by Courant is:

[[x + ξ, y + η]] = [x , y ] + Lxη − Lyξ +
1
2

d(ıyξ − ıxη).



Properties of the Courant bracket

I A Courant bracket is skew-symmetric
I It does not satisfy the Jacobi-identity:

Let A,B,C ∈ Γ(TM)⊕ Γ(T ∗M), and f ∈ C∞M, define

Jac(A,B,C) = [[[[A,B]],C]] + cycl = dNij(A,B,C),

here
Nij(A,B,C) =

1
3

(〈[[A,B]],C〉+ cycl .)

I It does not in general satisfy the Leibnitz rule: Let
ρ : TM ⊕ T ∗M → TM be an anchor, then

[[A, fB]] = f [[A,B]] + (ρ(A)f )B − 〈A,B〉df .

I ∃ an automorphism defined by B ∈ ∧2T ∗M,dB = 0.



B-field transform and β-transform

Let B be a smooth 2-form which maps TM → T ∗M via the
interior product x 7→ ıxB. There is an infinitesimal
transformation given by

eB =

(
1 0
B 1

)
: x + ξ 7→ x + ξ + ıX B

β-transform is another important symmetry given by
β ∈ ∧2(TM):

eβ =

(
1 β
0 1

)
: x + ξ 7→ x + ξ + ıξβ.

eB and eβ are both elements of the special orthogonal group
SO(TM ⊕ T ∗M) ∼= SO(n,n) which preserves the natural pairing
〈 , 〉.



Courant algebroid

A Courant algebroid over a manifold M is a vector bundle
E → M equipped with
- a nondegenerate symmetric bilinear form 〈·, ·〉,
- a Courant bracket,
- an anchor ρ : E → TM.
Example:
TE ⊕ T ∗E with the natural pairing, trivial anchor map and the
original Courant bracket is a Courant algebroid.



Dirac structure

L ∈ TM ⊕ T ∗M is a Dirac structure if (1) L is maximally
isotropic, (2) L is involutive, i.e. [[Γ(L), Γ(L)]] ∈ Γ(L).
Examples of Dirac structures are:

I TM and T ∗M.
I ⊕pTp ⊕q T ∗q , where p + q = dim(M).
I eB(TM).
I eβ(T ∗M).

In generalized geometry, D-branes are described by Dirac
structures.
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Doubled D-branes in TM ⊕ T ∗M



Procedures: (1) The Neumann boundary condition

Π̄tH∂1X|∂Σ
= 0

gives us a basis on the tangent part of the doubled space, i.e.

X := xI(Π̄tH∂X)I .

while the Dirichlet boundary condition

Πt∂0X|∂Σ
= 0

gives us a basis on the cotangent part of the doubled space, i.e.

Ξ := ξI(ΠtdX)I .

(2) {X + Ξ} requiring

∂x̃i
7→ dxi , dx̃i 7→ ∂xi

becomes a basis of TM ⊕ T ∗M.



A 4-dimensional Example

Let us consider a 4-dimensional example.
We start with flat metric and constant B-field, i.e.

G =

(
1 0
0 1

)
, B =

(
0 b
−b 0

)
,

it follows that the generalized metric is given by

H =


1 + b2 0 0 b
0 1 + b2 −b 0
0 −b 1 0
b 0 0 1

 .



A 4-dimensional Example

Solutions D-brane T-dual Generalized space
Π1 D1 ({X ,Y}) Π̄1 eB(TM)⊕ eβ(T ∗M)

Π2 D2 Π3 TM ⊕ eβ(T ∗M)

Π3 D0 Π2 eB(TM)⊕ T ∗M
Π4 D2 Π5 TM ⊕ eβ

′
(T ∗M)

Π5 D0 Π4 eB′
(TM)⊕ T ∗M

Π6 D1 (X ) Π7 eB(TY )⊕ TX ⊕ eβ(T ∗X )⊕ T ∗Y
Π7 D1 (Y ) Π6 TX ⊕ eβ(T ∗Y )⊕ T ∗X ⊕ eB(TX )⊕ TY
Π8 D1 ({X ,Y}) Π̄1 eθ(TM)⊕ eΘ(T ∗M)



A 6-dimesional Example

Similarly we consider a 6-dimensional example.
We start with flat metric and constant B-field, i.e.

G =

 1 0 0
0 1 0
0 0 1

 , B =

 0 b z −b y
−b z 0 b x
b y −b x 0

 ,

it follows that the generalized metric is given by H =

1 + b2y2 −b2xy −b2xz 0 bz −by
−b2xy 1 + b2z2 + b2x2 −b2yz −bz 0 bx
−b2xz −b2yz 1 + b2x2 + b2y2 by −bx 0
0 −bz by 1 0 0
bz 0 −bx 0 1 0
−by bx 0 0 0 1

 .



A 6-dimensional example

Solutions D-brane T-dual Generalized space
Π1 D0 Π2 eB(TM)⊕ T ∗M
Π2 D3 Π1 TM ⊕ eβ(T ∗M)

Π3 D1 (X ) Π4 eβ(T ∗X )⊕ T ∗Y ,Z ⊕ eB(TY ,Z )⊕ TX

Π4 D2 ({Y ,Z}) Π3 eB(TX )⊕ TY ,Z ⊕ eβ(T ∗Y ,Z )⊕ T ∗X
Π5 D1 (Z ) Π6 eB(TX ,Y )⊕ TZ ⊕ eβ(T ∗Z )⊕ T ∗X ,Y
Π6 D2 ({X ,Y}) Π5 eβ(T ∗X ,Y )⊕ T ∗Z ⊕ eB(TZ )⊕ TX ,Y

Π7 D1 (Y ) Π6 eβ(T ∗Y )⊕ T ∗X ,Z ⊕ eB(TX ,Z )⊕ TY

Π8 D2({X ,Z}) Π7 eB(TY )⊕ TX ,Z ⊕ eβ(T ∗X ,Z )⊕ T ∗Y



Observations

We observe that:
I Doubled D-branes in doubled geometry are equivalent to a

Courant algeboid composed of a pair of Dirac structures in
generalized geometry, which can be further classified into
the following categories:

I TM ⊕ T ∗M
I eB(TM)⊕ T ∗M
I TM ⊕ eβ(T ∗M)
I L⊕ L̃ where L = ⊕pTp ⊕q T ∗

q and L̃ = eB(⊕pT ∗
p )⊕ eβ(⊕qTq)

requiring p + q = dim(M) and dB = dβ = 0.
I Π and Π̃ ≡ Π̄ in doubled geometry corresponds to

TM ↔ T ∗M in generalized geometry.
I B-trasnform reduces the dimension of a D-brane while
β-transform increases the dimension of a D-brane.



Conclusion



Thank you!
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