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Introduction
Spontaneous symmetry breaking in 2D Ising model

F(h,T) : Helmholtz free energy G(M,T) : Gibbs free energy
h : External field . M: Magnetization
T: Temperature - T:Temperature
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Dynamical chiral symmetry breaking in the Nambu—Jona-Lasinio model (0 density)

Vi (x, t) : Wilsonian effective potential - VL(e,t) : Legendre effe_ctive potential
x : Bilinear fermion operator Yy . ¢: Chiral condensate (1/)1/))
t: Renormalization scale parameter t: Renormalization scale parameter
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Nondifferentiable point

(Mass generation) (1/)1/)) *+ 0



* Wilsonian effective potential I}y (X, t) is obtained as the solution of the
nonperturbative renormalization group equation (NPRGE).
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e The singular solution (t > t.) is not the “usual solution ” of the partial
differential equation (PDE). A Viy(z,t)
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PDE is not satisfied.

e We’ll authorize such a singular solution which describes the phase transition.
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We introduce the "weak solution"” as the mathematically extended notion of
solution, which can have some nondifferentiable points.
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1. Nonperturbative renormalization group equation

Partition function Lower modes Higher modes
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Seff|®; A] : Wilsonian effective action
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Remaining variable of integration Includes higher mode effect (|p| > A)

Nonperturbative renormalization group equation (Functional differential equation)

OSerr[¢; A] _ _
f(r;A = /B(Seﬁ[¢aA])

This functional differential equation (FDE) can not be solved.
We reduce the FDE to a partial differential equation by some approximation.



Local potential approximation for fermions
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Wilsonian effective potential
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Nonperturbative renormalization group equation (1st order PDE)
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[> We reduce the PDE to a system of ordinary differential equations (ODEs).



The method of characteristics ( PDE = system of ODEs)

Change of variables
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Hamilton-Jacobi type equation

0S(x,t)
ot

(H(p,t):convexin p)

+ H(p,t) =0

Characteristic equations
 da.(t) _ 0H(p,t)
dt  Op

p=pc(t)

dpe(t)
dt

- 0H(p,t)

> Canonical equations




Wilsonian effective potential V,(x,t)
(mg=0,9=17%xg., u=0.7,t=0, 04, 0.5, 0.6, 0.717, 10)

0.00017 . -0.03 -0.0296
= < 0
i" o o
— > >
= = =
> >
-3e-005 5753 )ig 0.003 -0.0312663 )ig 0.003 -0.028%,508 Q 0.0008
-0.0281 . -0.02715 -0.022
— ~
© ~— _——
o N~ 8
3 < X
" x
= = =
> = =
>
-0.02% G557 )ig 0.001 -0.028%672 )ig 0.0012 -0.028 6503 )ig 0.003

Vw“ Multi-valued solution
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VwA Physical single-valued solution
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We introduce the weak solution which is a single-valued and singular solution.




2. Weak solution

Hamilton-Jacobi equation ( S(x, t) :singular solution )

0S(x,t) " (55 t) 0

ot oz

Add the viscosity term
(second derivative with respect to x ).

Viscous Hamilton-Jacobi equation ( S€(x, t): regularized smooth solution )
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\ viscosity term

Viscosity solution S(.’L’, t) = lim SG(:L., t)
(weak solution of H-J eq.) e—0

M.G. Crandall and P.-L. Lions, 7rams. Amer. Math. Soc. 277, 1 (1983).




How to calculate viscosity solution

There are two major methods of calculation for viscosity solution.

e Vanishing viscosity method (Definition of viscosity solution)
1. Calculate the regularized smooth solution S€(x, t).

2. Take the limit
S(z,t) = lim S¢(z,1).

e—0

e Convert to the optimality control problem
1. Replace the initial value problem of Hamilton-Jacobi equation with a
completely different problem which is called the “optimality control problem”.
2. Calculate the value function which is equivalent to the viscosity solution.

[> We solve the optimality control problem to calculate the viscosity solution.



Optimal control problem

Cost functional: J[w]z/(; L(x(7),2(7),T) dr

\

Lagrangian (given)

+ So(z(0))
z(t)=x N

Initial action (given)

Value function: S(x,t) = min J[z| (= J[z*])

z(-)

( Optimal control problem is to find the path x*(t) which minimizes J[x]. )

It is known that the value function is equivalent to the viscosity solution of

the Hamilton-Jacobi equation.
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Dynamic programming (Method to calculate the value function)
. Optimality condition
S(z,t) = min [/ L(z(7), (1), 7) dr + S(z(t — At), t — At)}
t
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Discretize (x, t) plane
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1. Calculate the short-time action and the value function for all lattice points of t;_; respectively.
2. Find the minimum point in the points of ¢;_; to give us the value function S(x;, t; ).



3. Results (t = 0.5, 0.6)
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Viscosity solution Vyy(x, t) is the continuous and maximum brunch solution.
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Wilsonian effective potential Viy(x,t)
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Legendre effective potential (solid line) is a convex envelope of the numerical
result of the characteristic equations (broken line).
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The viscosity solution of NPRGE convexifies the Legendre effective potential.

The convex Legendre effective potential has the global minimum only which
corresponds to the vacuum.




5. Summary

e The NPRGE of the NJL model is the H-J type equation and the solution has
some singularities.

e The viscosity solution (weak solution) is a single-valued and singular solution.

* The obtained viscosity solution perfectly describes the physically correct
vacuum even in the case of the first order phase transition appearing in a
finite-density medium, which is also demonstrated by the auto-
convexification of the Legendre effective potential.
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Challenges for the future
 We are going to apply this method to the finite temperature and density
QCD and improve the local potential approximation to the 2nd order PDE.



