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states in 2d RCFTs

Motivation

- To study the property of entanglement entropy for
excited states .

=P |n this talk, we consider local operator excited states:
O) = O(x) |vac) (t=0)

- To study the universal property of entanglement entropy
in the limit the subsystem is very large.

cf) In the small size limit, there is a property analogous to
the first law of thermodynamics: AS4[|O)] x Eo

(ASA[|O)] = 54]|0)] — Sa||vac)] )
=)
In this talk , we consider B O)1 A (half line)
the following setup: "_"O

> X

Replica method

To calculate entanglement entropy, first we calculate Tr 4 p'
instead of Irapa log pa. Then, we analytically continue 2 to1:

1
log Tr 4p'4

— 1 n=1

:Replica method

Sa = —Trapalogpa = "

ground states

In the path integral formalism, we can represent Tr 4p’4 in terms of

partition function on the branched covering of the spacetime mfd:
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7 . partitoin function on nsheet covering space .,
Local operator excited states

In this case, the state takes the following form:
piot(t, 7)) = e HtetH O (1) |0) (0] OF (x)e<H et

= O(e, ) 0) (0] O (71, z)

In the path integral formalism,
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Wrr_1-Wo ithe coordmate of the mserted IocaI operator
on the k-th sheet .

Finally, we can express the difference between EE of the excited
state and the ground state using the correlation function!
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We can this time evolution as follows:
At t =0, entangled (quasi) particles are created at x = -l,

and they are propagate with the velocity of light.

* If t < |, quasi particles don’t reach at entangling R
surface, so REE doesn’t change: B A

- Ift>1, quasi particles pass the entangling
surface, so the value of REE increase.

The late time value

r >

In 2d CFT, free boson is decomposed into chiral and anti chiral parts:

¢(x,t) = ¢r(x —1t) + dr(x + 1)

From this, | | | |
O(z,t)|0) = elaPrL 07) ® o' APR Or) + e taPL 07) ® e 'APR OR)

~ M@ Me+ )@ )g EPR state!

(Te = —€ — Zt’Tl = —e+zt)

ATrpy = [log <OT(@U1)O(UJ2) T OT(?UQn—l)O(@UZn»En
—n log <OT(w1)O(w2)>21 ]

Result for 2d RCFTs i
- n=2 REE
Using conformal mapping

> - A
Yo = 312 = Jw = \/J(o<9<47r

We can n =2 REE in terms of 4-pt function on >.; = C :
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(O(w1, W1)O(ws, W) O(ws, W3)O(wa, Wa))s,, = 213224 2 - Go(z, 2)

( 2 = 212234/213%24: cross ratio )

In the late time,

AS'Y =logdo (do:quantum dimension)

Why?

Because 7. and 7; are complex, a _(—t) + /(=0 1 2 N
Z is not the complex conjugate of z. | ~— W

The late time value is L —(I+t) + /(I+1)2 + &2

(2,2) = (14+ O(%),0(?) > (1,0)  \_ 2+

From this, Ga(z,z) =) (Cl,)*Fa(blz)F.(b|2)
b
Foola] - Fu(0[1 — 2) F,(0|2)

(z, z)—>(1 0)
~ FOO [CL] . (1 — Z)_2Aa5_2Aa

where Fy.|alis the fusion matrix defined by
Fo(b]1 — 2) ZFbc - Fo(clz)  (F,(blz):conformal block)

and Foo[ ] — 1/da

Results for free scalar field CFTs in 2D

We first consider the free massless scalar field theory:

1
S = 5 / d*x0,, O ¢

Time evolution of (Renyi ) Entanglement Entropy
Operator: O = ¢'@? 4 ¢~ ta?

In this case, the time evolution of (Renyi)EE becomes as follows:
ASYY
0 (t <)

ASYY =
4 (t > 1)

log 2

Conclusion

© When the subsystem is very large , the late time value of AS{"
becomes finite.

- ASX’) is the contribution to EE from the local operator,so (R)EE
can detect the degrees of freedom of local operator.

cf) EE for ground states can degrees of freedom of theory
(for example central charge)

Future problem

* Holographic viewpoint
- other CFTs (for example D1-D5 orbifold)
- Relation to the topological EE in gapped systems

1458H9H L EH




