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Supersymmetry on lattice 2

For more than 30 years, no one has succeeded to
construct satistactory: lattice models which realize
full supersymmetry algebras.
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Are full SUSY algebras necessary to keep crucial
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Supersymmetry on lattice 2

For more than 30 years, no one has succeeded to
construct satisfactory lattice models which realize

full supersymmetry algebras.

S0, | want to know the answer: to the question:

Are full SUSY algebras necessary to keep crucial
features of SUSY on lattice?

Our results suggest that the answer is possibly negative.

M. SAKAMOTO, talk at Strings and Fields @ YITP, July 24, 2014



Leibniz rule and SUSY algebra 34

We want to find lattice SUSY transf. 0g, 0g such that
B lattice. SUSY transt. lattice action

0S|y X F| = dqrS|osx; | = 0
with the SUSY" algebra — ‘translation” on lattice

10q ., 0q’ } = Op
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Leibniz rule and SUSY algebra 3

We want to find lattice SUSY transf. 0g, 0g- such that
- lattice SUSY transf. |attice action

0QS |0 X F| = dqrS|o;x; ]| = 0
with the SUSY algebra — “translation” on lattice
{0q, 0q } = Op

One might replace o p by a difference operator V.
Then, we need to find V/ which satisfies the Leibniz rule.

op(9Y) = (0pP) ¥+ 9 (0pY)
op = V. V(o) = (Vh) 1 + ¢ (Vap) |Leibniz rule
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Leibniz rule and SUSY algebra 3

We want to find lattice SUSY transf. 0g, 0g- such that
- lattice SUSY transf. |attice action

0QS |0 X F| = dqrS|o;x; ]| = 0
with the SUSY algebra — “translation” on lattice

{0qg ., 0q | = 0P
One might replace o p by a difference operator V.
Then, we need to find V which satisfies the Leibniz rule.

ép(gbzp) — (5P¢) Y+ o (5P¢)
op V. V(o)) = (Vap) 1 + ¢ (Vap) |Leibniz rule

However, we can show that it Is hard to realize the Leibniz
rule on lattice!!
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No-Go theorem 4

Jo answer: the gquestion whether the Leibniz rule can be
realized on lattice or not, let us consider general forms of
difference operators and field products such as

difference operator: (V&) = Y. Vi ®m
field product: (¢ % 1), = Y MyimP1m
Im
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g

No-Go theorem 4

To answer the gquestion whether the Leibniz rule can be
realized on lattice or not, let us consider general forms of
difference operators and field products such as

difference operator: (V&) = Y. Vi ®m
field product: (¢ * 1), = Y Myim®1m
Im

For example,

(V¢)n — ¢n—|—1 — ¢n — Vnm = 5n—|—1,m i 5n,m
(¢ * w)n = qbnwn — M, = 5n,l5n,m
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g

No-Go theorem 4

To answer the gquestion whether the Leibniz rule can be
realized on lattice or not, let us consider general forms of
difference operators and field products such as

difference operator: (V) = Y Vim®m

field product: (@ * ¥), = > Mpim O1¥m
Im
No-Go Theorem M.Kato, M.S. & H.So, JHEP 05(2008)057

There is no difference operator V satisfying
the following three properties:

) translation invariance
i) locality
i) Leibniz rule V(¢ % ¢) = (V) * 9 + ¢ = (Vap)
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Our approach to construct lattice SUSY models@

The No-Go theorem tells us that we cannot realize
SUSY algebras with) V' equipped with the Leibniz rule.
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Our approach to construct lattice SUSY models@

The No-Go theorem tells us that we cannot realize
SUSY algebras with V' equipped with the Leibniz rule.

Our: strategy to construct lattice SUSY models is

Nilpotent SUSY algebra

full SUSY algebra — , ;
(0g)” = (dq’)” = {dq,dq/} =0

Leibniz rule. —— Cyclic Leibniz rule
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Complex SUSY quantum mechanics on lattice (6
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Complex SUSY quantum mechanics on lattice (6

Lattice action

S = (V¢—7 V¢+) - (F—7F+) o i(X—a V)Z-I-) - i(VX—,XJr)
—AL (04 * 04 ) + 224 (X4 X+ * ¢4)
AL(F_y b d) — 22_(x—r X * b_)

difference operator: (V¢)n = ). Vinm®m
field product: (¢ * ¥)n = > MypimO1Um
Ilm
inner. product: (¢, ¥) =) on1,

d To make our discussions simple, we here put m=0.
d'We can add mass terms as well as supersymmetric Wilson
terms to prevent the doubling.
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N=2 nilpotent SUSYs 7

N=2 Nilpotent SUSYs: (§.)% = (6_)* = {6+,6_} =0

04 Pp = Xt O_X+ = LV
04 x4 = Fi o FL = —iVixy
04 X— = —tV - O = —Xx—
oLF_ = —tVix_ 0_x— = F_
others = 0 others — 0
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N=2 nilpotent SUSYs

N=2 Nilpotent SUSYs: (§.)% =

04 Pp = X+
04 x4 = Fiy
Oy X— = —1Vp_
o+ = —1Vix—
others = 0
0+S =0
U

(VX+.,0+ *d+) + (Vo+ , 04+ * x+) + (Vo+ , X+ *P+) =0

O_x4 = iV
0_F.y = —tVx.
O_p_ — —X_
0_x— = F_
others = 0

M. SAKAMOTO, talk at Strings and Fields @ YITP, July 24, 2014

(6-)% = {64,6-} =0



N=2 nilpotent SUSYs 7

N=2 Nilpotent SUSYs: (§.)% = (6_)* = {6.,6_} =0

04 Pp = X+ O_X+ = LV Oy
04 x4 = Fiy 0_FL = —iVixy
04 x— = —iVo_ 0 = —X—
0rLF_ = —tVix_ 0_x— = F_
others = 0 others = 0
0+S =0
J

(VX+,0+ *dt) + (Vi ,04 *xx+) + (VoL , X+ * 1) =0
We call this Cyclic Leibniz rule.
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Cyclic Leibniz rule vs. Leibniz rule 34

We have found that the Cyclic Leibniz Rule guarantees
the N=2 nilpotent SUSYSs.

Cyclic Leibniz Rule (CLLR)
(VA, BxC)+ (VB,C* A)+ (VC, Ax*B) =0

3. Leibniz Rule (LR)
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Cyclic Leibniz rule vs. Leibniz rule a

We have found that the Cyclic Leibniz Rule guarantees
the N=2 nilpotent SUSY3s.
Cyclic Leibniz Rule (CLLR)

(VA, BxC) + (VB, C* A) + (VC, A% B) =0

3, Leibniz Rule (LR)
(VA, BxC)+ (A, VB *xC)+ (A, B¥xVC) =0
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Cyclic Leibniz rule vs. Leibniz rule a

We have found that the Cyclic Leibniz Rule guarantees
the N=2 nilpotent SUSY3s.

Cyclic Leibniz Rule (CLLR)
(VA, BxC)+ (VB,CxA)+ (VC, A*xB) =0

3. Leibniz Rule (LR)
(VA, BxC) + (A, VB xC) + (A, Bx=VC) TO

No-Go theorem
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Cyclic Leibniz rule vs. Leibniz rule 34

We have found that the Cyclic Leibniz Rule guarantees
the N=2 nilpotent SUSY3s.

Cyclic Leibniz Rule (CLLR)
(VA, BxC)+ (VB,C* A)+ (VC, Ax*B) =0

3. Leibniz Rule (LR)
(VA, BxC) + (A, VB xC) + (A, B*VC)}TQO

No-Go theorem

'

° The cyclic Leibniz rule ensures a lattice analog
of vanishing surface terms!

(Vo ¢ d) =0 ~— [dx 9, (¢p(x))” =0

on lattice LCLR in continuum

M. SAKAMOITO, talk at Strings and Fields @ YITE, July 24, 2014



An example of CLR [ 9 ¢

An explicit example of the Cyclic Leibniz Rule::

(V¢)n = %(qﬁn—l—l — ¢n—1)

(qb % zp)n — %(2¢n—|—1¢n—|—1 L 2§bn—1¢n—1 Iatticciliplacing
qbn-l—lwn—l ¢n—1¢n+1)

M Kato, M.S: & H.So, JHEP 05(2013)089

which satisty i) translation invariance, ii)locality: and
i) Cyclic Leibniz Rule.

!
= The field product (¢ * ¥)n should be non-trivial!

M. SAKAMOITO, talk at Strings and Fields @ YITE, July 24, 2014



Advantages of CLR 106

Advantages of our lattice model with CLR are given by,

CLR no CLR

nilpotent SUSYs

Nicolai maps

“surface” terms

non-renormalization
theorem

cohomology
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Advantages of CLR 106

Advantages of our lattice model with CLR are given by,

CLR no CLR

nilpotent SUSYs 04 , 0— 0= 04 + 0—

Nicolai maps

“surface” terms

non-renormalization
theorem

cohomology
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Advantages of CLR 106

Advantages of our lattice model with CLR are given by,

CLR no CLR
nilpotent SUSYs 0t , 0— 0= 04 + 0—
Nicolai maps 2 1

“surface” terms

non-renormalization
theorem

cohomology
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Advantages of CLR 106

Advantages of our lattice model with CLR are given by,

CLR no CLR
nilpotent SUSYs 0t , 0— 0= 04 + 0—
Nicolai maps 2 1

“surface” terms (Vao, o) =0 | (Vo, o * @) #0

non-renormalization
theorem

cohomology
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Advantages of CLR 106

Advantages of our lattice model with CLR are given by,

CLR no CLR
nilpotent SUSYs 0t , 0— 0= 04 + 0—
Nicolai maps 2 1

“surface” terms (Vao, o+ ) =0| (Vo, o * ) #0

non-renormalization
theorem O X

cohomology
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Advantages of CLR 106

Advantages of our lattice model with CLR are given by,

CLR no CLR
nilpotent SUSYs 0t , 0— 0= 04 + 0—
Nicolai maps 2 1

“surface” terms (Vao, o+ ) =0| (Vo, o * ) #0

non-renormalization
theorem O X
cohomology non-trivial trivial
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Advantages of CLR 106

Advantages of our lattice model with CLR are given by,

CLR
non-renormalization O
theorem
cohomology non-trivial
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Non-renormalization theorem in continuum €&

One of the striking features of SUSY theories is
the non-renormalization theorem.
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Non-renormalization theorem in continuum @

One of the striking features of SUSY theories is
the non-renormalization theorem.

d4d N=1 Wess-Zumino model in continuum

chiral supertield | l—superpotentia/
S — /d%{ /d29d2§ &1(9) D (0) - /d29 Wi(®) - c.c.}
- Dterm F term
(kinetic terms) (potential terms)
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Non-renormalization theorem in continuum @&

One of the striking features of SUSY theories is
the non-renormalization theorem.

d4d N=1 Wess-Zumino model in continuum

chiral superfield | l—superpotentia/
S — /d4az{ /d29d2§ &1(9)(0) - /d20 Wi(D) - c.c.}
- D term F term
(kinetic terms) (potential terms)

Non-renormalization Theorem

There is no quantum correction to the F-terms
In any order of perturbation theory.
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Essence of non-renormalization theorem 12¢

S = /d4az{ /d29d2§ &1(9)®(0) - /d20 Wi(D) - c.c.}

- D term F term
(kinetic terms) (potential terms)
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g

Essence of non-renormalization theorem 12¢

S = /d4az{ /d29d2§ &1(9)®(0) - /d29 Wi(®) - c.c.}

- D term F term
(kinetic terms) (potential terms)

Holomorphy plays an important role in the nen-renoermal-

ization theorem. chiral superfield r anti-chiral superfield

tree l_ coupling constant

superpotential

/dze Wtree(q) >\) + /dze Wtree((I)Ta )‘*)
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Essence of non-renormalization theorem 12¢

S = /d433{ /d29d2§ &1(9)®(0) - /d29 Wi(®) - c.c.}

- D term F term
(kinetic terms) (potential terms)

Holomorphy plays an important role in the non-renormal-

ization theorem. chiral superfield anti-chiral superfield
lree : I—coup//ng constant r

superpotential
/dze Wtree((I) >\) _l_ /d29 Wtree((I)Ta )‘*)

effective. gquantum corrections
superpotential ——

/d29 Wi (@, A; &, AT) - /d2éWeff(@T,A*; $, )\)
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Essence of non-renormalization theorem 12¢

S = /d433{ /d29d2§ &1(9)d(0) - /d29 W(®) +c.c.}

- D term F term
(kinetic terms) (potential terms)

Holomorphy plays an important role in the non-renormal-

ization theorem. chiral superfield anti-chiral superfield
lree I—coup/ing constant r

superpotential |
/dze Wtree((:[)a >\) + /d2§ V_Vtree((I)Ta )‘*)
g

effective uantum corrections

superpotential —
/d29 W (@, A; &b, ) 4 /d2é W (@1, A% < )
holemorphy. anti-hoelemorphy.
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Essence of non-renormalization theorem 12¢

S = /d433{ /d29d2§ &1(9)®(0) - /d29 Wi(®) - c.c.}

- D term F term
(kinetic terms) (potential terms)

Holomorphy plays an important role in the non-renormal-

ization theorem. chiral superfield anti-chiral superfield
lree I—coup/ing constant r

superpotential |
/dze Wtree((:[)a >\) _l_ /d2é V_Vtree((I)Ta )‘*)
g

effective uantum corrections

superpotential —
/d29 W (@, A; &b, ) 4 /d2é W (@1, A% < )
nolemorphy U anti-holemorphy.

INo quantum correction!!’  Wett = Wiree
N.Seiberg, Phys. Lett. B318 (19938) 469
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Essence of non-renormalization theorem 12¢

S = /d433{ /d29d2§ &1(9)d(0) - /d29 Wi(®) - c.c.}

- D term F term
(kinetic terms) (potential terms)

Holomorphy plays an important role in the non-renormal-

ization theorem. chiral superfield r anti-chiral superfield

tree T coupling constant

superpotential

/dze Wtree((I) >\) + /d29 Wtree((I)Ta )‘*)

anti-chiral superfield
chiral supertield

/d29Weff(<I> A b, )+/d29Weﬂ~(<I>’f A% )
holemorphy. U anti-holomorphy.

INo quantum correction!!”  Wett = Wiree
N.Seiberg, Phys. Lett. B318 (1993) 469
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Difficulty in defining chiral superfield on lattice 13

The holomorphy requires that the F term W(®) depends
only on the chiral superfield ®(x,d), whichis defined by

D®(x,0) = (gé iea“au)q)(m,e) — 0 In continuum
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Difficulty in defining chiral superfield on lattice 13

The holomorphy requires that the F term W(®) depends
only on the chiral superfield ®(x,d), which is defined by

D®(x,0) = (gé ieaua,,,)cl)(:c, 0) = 0 in continuum

12
D& (), = ( gg ieauv“)@(e)n =0 on lattice
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Difficulty in defining chiral superfield on lattice 13

The holomorphy requires that the F term W(®) depends
only on the chiral superfield ®(x,d), which is defined by

D®(z,0) = (gé ieaua,,,)@(:c, 0) = 0 in continuum
2
D& (8),, = ( gg ieauvu)@(e)n =0 on lattice

However, the above definition of the chiral supertieldis
IlI-defined because any products of chiral superfields
are not chiral/due to the breakdown of LR on lattice!

D(I)1 — D(I)z =0 — D((I)l(I)z) # 0

the breakdown of:the
lL.eibniz rule on lattice
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Superfield formulation in our lattice model 146

diLattice superfields
W, (04,0-) = x+ + 04 F4 + 0-iVoy + 010-iVix+
Ay (01) = ¢+ + O£ x4+
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Superfield formulation in our lattice model 14¢

diLattice superfields
W, (04,0-) = x4 + 04 F4 + 0-iVoy + 010-iVix+
AL(01) = or + 01 x4

dilLattice action in superspace. S = Siyper + Stypelr
Fryper = / dodi_ W_W. — [kinetic terms (D-term)

StypeII = /d0_|_d0_ {9_ )\_|_(\IJ_|_, A_|_ * A_|_) —I— 0_|_ A_(\IJ_, A_ * A_)}
— polential terms (F-term)
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Superfield formulation in our lattice model 14¢

diLattice superfields
W, (04,0-) = x4 + 04 F4 + 0-iVoy + 010-iVix+
AL(01) = or + 01 x4

dilLattice action in superspace S = Siyper + Stypelr
Stypel = /d9+d9— KWy, AW, A_)

Stypert = [diydo- {9_ WA(Tr, Ay) 4 01 W(T_, A_)}

M. SAKAMOTO, talk at Strings and Fields @ YITP, July 24, 2014



g

Superfield formulation in our lattice model 146

diLattice superfields
W, (04,0-) = x4 + 04 F4 + 0-iVoy + 010-iVix+
AL(01) = or + 01 x4

dilLattice action in superspace S = Siyper + Stypelr
Stypel = /d9+d9— (W, AW, A)

Styperr = [d64do_ {9_ WA(T, A+ 0, W(T_, A_)}
'
® Stypen is SUSY-invariant if and only if W (¥, A_)
depends only on ¥, A, and is written into the form

n—1

W(¥,Ay) = ZAS:L)(‘I’WL,;H k Ay koo xAy)

and (¥.,A.*xA, x---xA,) hasto obey CLR.

M.Kato, M.S., H.S0, in preparation
M. SAKAMOTO, talk at Strings and Fields @ YITP, July 24, 2014



Non-renormalization theorem in our lattice model €&

/d0+d9_ 0 Wiree (Waos Agy Ay )

Wiree = A4 (W, AL+ Ap)
guantum corrections
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Non-renormalization theorem in our lattice model €6

/d9+d9_ 0 Wiree (Was Agy Ay

Wiree = A4 (W, Ay x AL)
guantum corrections

/d9+d9_ 0 W (W Ay Ars T, A A_)
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Non-renormalization theorem in our lattice model €6

/d9+d9_ 0 Wiree (Was Agy Ay

Wiree = A4 (W, Ay x AL)
guantum corrections

/d9+d9_ 0. Wig(Woy Ay Api Vo, A, L)
S —
SUSY-invariance
with CLR! forbids them!
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Non-renormalization theorem in our lattice model €6

/d9+d9_ 0 Wiree (Was Agy Ay

Wiree = A4 (W, Ay x AL)
guantum corrections

[d04db- 0~ Werr(@, Ay, A XX
—

SUSY-invariance
with CLR forbids them!

The holomorphic property.
IS realized in our lattice model.

Y
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Non-renormalization theorem in our lattice model €6

/d9+d9_ 0 Wiree (Was Agy Ay

Wiree = A4 (W, Ay x AL)
guantum corrections

[d04db- 0~ Werr(@, Ay, A XX
| —
SUSY-invariance

with CLR forbids them!

The holomorphic property
IS realized Iin our lattice model.

\/
no quamtum corrections: Wag = Wiree
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Non-renormalization theorem in our lattice model €6

/d9+d9_ 0 Wiree (Was Agy Ay

Wiree = A4 (W, Ay x AL)
guantum corrections

[d04db- 0~ Werr(@, Ay, A XX
—

SUSY-invariance
with CLR forbids them!

The holomorphic property
IS realized Iin our lattice model.

\/
no gquamtum) corrections: Wag = Wiree

The non-renormalization theorem holds
even for-a finte lattice spacing in our:lattice model.
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Q-exact form and cohomology 16¢

Stype I Stype II

N\

I = 3+5—K(¢:|:9 Fy,x+, )2:&5"‘ 04 Wit x+) + 5—W(¢—7 X—)
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Q-exact form and cohomology 16¢

StypeI Stype i

N\

S = 0.6 K (des Firy Xty Xt) 4+ 00 Wby x1) - W(d—, x—)

|

Invariant under: o+
because ofithe niipotency:

(63)% = (6-)% = {64,6-} = 0
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Q-exact form and cohomology 16¢

StypeI Stype i

—\

S = 3+5—K(¢:|:9 Fy,x+, X:l:i+ 5+W(¢+9 X+) =0 5—W(¢—9 X—)

| |

iInvariant under o4 invariant under- 44 only if
because of the nilpotency: 5 W —o0

(63)% = (6-)% = {64,6-} = 0
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Q-exact form and cohomology 16¢

StypeI Stype i

—\

S = 0.6 K (de, Firy Xty Xt) 4+ 00 Wby x1) + 8- W(d—, x—)

| |

Invariant under: o+ iInvariant under 64 only if
because of the nilpotency: 5 W —o0

(63)% = (6-)% = {64,6-} = 0

0_-exact K
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Q-exact form and cohomology 16¢

StypeI Stype i

—\

S = 0.6 K (de, Firy Xty Xt) 4+ 00 Wby x1) + 8- W(d—, x—)

| |

Invariant under: o+ iInvariant under 64 only if
because of the nilpotency: 5 W —o0

(63)% = (6-)% = {64,6-} = 0

0_-exact /
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Q-exact form and cohomology 16¢

StypeI Stype i

—\

S = 0.6 K (de, Firy Xty Xt) 4+ 00 Wby x1) + 8- W(d—, x—)

| |

Invariant under: o+ iInvariant under 64 only if
because of the nilpotency: 5 W —o0

(63)% = (6-)% = {64,6-} = 0

0_-exact /
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Q-exact form and cohomology 16¢

Stype I Stype II

—\

S = 0.6 K (de, Firy Xty Xt) 4+ 00 Wby x1) + 8- W(d—, x—)

| |

Invariant under: o+ iInvariant under 64 only if
because of the nilpotency: 5 W —o0

(63)% = (6-)% = {04,0-} =0

d_-closed
d_-exact / but not exact
W =6_K'
/
StypeI
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Q-exact form and cohomology 16¢

Stype I Stype II

N\

S = 0.6 K (de, Firy Xty Xt) 4+ 00 Wby x1) + 8- W(d—, x—)

| |

Invariant under: o+ iInvariant under 64 only if
because of the nilpotency: 5 W — 0
(63)% = (6-)% = {04,0-} =0
d_-closed
d_-exact / but not exact
W = 0_K' Wi (X4 Ot P % oe % )
g } which has the properties:
typel W # 6_K' CLlR
O_W ~ (Voi, oy * @y % -c- % pp) = 0

M.Kato, M.S., H.S0 in preparation
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Q-exact form and cohomology 16¢

Stype I Stype II

N\

S = 0.6 K (de, Firy Xty Xt) 4+ 00 Wby x1) + 8- W(d—, x—)

| |

Invariant under: o+ iInvariant under 64 only if
because of the nilpotency: 5 W —o0
(63)% = (6-)% = {04,0-} =0
d_-closed
d_-exact / but not exact
W =0d_K' W o (Xt O % @y *2c -k Dy )
} which has the properties:
StypeI W. # oK' CLlR
O_W ~ (Voi, oy @y % - - % pp) =0

M.Kato, M.S., H.So in preparation
The type 11 terms are cohomologically non-trivial'!
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Summary &

d/We have proved the No-Go theorem that the Leibniz rule
cannot be realized/on lattice under reasonable assumptions.

d We proposed a lattice SUSY model equipped with the cyclic
Leibniz rule as a modified Leibniz rule.

d/A striking  feature of our lattice SUSY modeliis that the non-
renormalization theorem holds for: a finite lattice spacing.

O Our results suggest that the cyclic Leibniz rule grasps im-
portant properties of. SUSY.
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Remaining tasks 18

d|Extension to higher dimensions

We have to extend our analysis to higher aimensions.
Especially, we need to find'solutions to) CLR in more
than one dimensions.

diinclusion ofigauge fields

l)
O Nilpotent SUSYs with CLLR <= full SUSYs

Are nilpotent SUSYs extended by CLLR enough to
guarantee full SUSYs ?
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SUSY transformations of superfields | 20¢

Wi (04,0 ) = x+ 1+ 0+ Fy 4+ 0-iV@+ +- 0107V x+
Ay (01) = o+ + 04 x+

transform under SUSY' transformations 44 as

d
0+:0(04.) = Eo(gi)
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Nicolai maps 21¢

Two Nicolaimaps:
EL = Vo &= o140t
- =V Lo xp

Action: § = Sg I Sy
Sp = (é—l—a €—|—) — (é—v €—)

(Vo+, dL*d1) n 0
CLR
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Proof of No-Go Theorem 221

difference operator: (Va), = Y V,.m®m
field product: (¢ * 1), = Y. Myim®i1¥m
Ilm
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Proof of No-Go Theorem 221

difference operator: (V¢),, = > Vi.m®m
field product: (¢ * 1), = Y. Myim®i1m
Ilm

) translation invariance
Vim = V(n — m)
Miyim = M(I — n,m — n)
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Proof of No-Go Theorem 221

difference operator: (V¢),, = > Vi.m®m
field product: (¢ * ©¥), = Y. Muim®O1¥m
Ilm
i) locality

V(m)
M1, m)

|m|—o0o

> 0/ (exponentially)

|1L;|m| =0

> 0/ (exponentially)

holomorphic representation
V(z) = Y V(m) 2™

i =~ on 1 —e<|z|,|lw|<1+e€
M(z,w) = > M(l,m) z'w™
lm

V(z), M(z,w) have to be holomorphic on 1 —e < |z|, |w| < 1+ &
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Proof of No-Go Theorem

difference operator: (Vo),, = > Vi.m®m

field product: (¢ * 1), = Y. Myim®i1m
Ilm

i) Leibniz rule

Vi(ox 1) = (Vo) x b+ ¢ (V)

SRR

M(z, w) (V(zw) — V(z) — V(w)) =0

V(zw) — V(z) — V(w) =0

V(z) < log =z

log z is non-holomorphic on 1 — e < [z| < 1 f €.

The lL.eibniz rule cannot be realized on lattice!
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