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Conformal Field Theory

Let us consider a simple (almost trivial) 
modification to the Hamiltonian

in 2 dim.



Global Conformal Transformation !
on the Riemann surface

Introduce 

Casimir Operator



Now the modification 





No way to realize



!

suggest?

What does

“Continuous Spectrum”

c.f.  “Level” structure of excited states in CFT 

Gap or “Mass”



Prog. Theor. Phys. 122 (2009) 953; 
ibid. 123 (2010) 393. !

To motivate further, let me 
introduce an interesting work       
by A. Gendiar, R. Krcmar and T. 

Nishino 



1d systems w/ nearest neighbor coupling

They Started With

and

Gendiar, Krcmar, Nishino (2009)

Open Boundary Condition
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Remedy Edge Effect
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Sine Square Deformation



Sine Square 
Deformation Closed

Same Ground 
State

A. Gendiar, R. Krcmar and T. Nishino!
Prog. Theor. Phys. 122 (2009) 953; ibid. 123 (2010) 393. !



H. Katsura, J. Phys. A:Math.Theor. 44 (2011) 252001!
I. Maruyama, H. Katsura and T. Hikihara,!

Phys.Rev.B84(2011)165132!

The mechanism behind this 
deformation was clarified by  

H. Katsura and his collaborators. 



Closed Hamlitonian

hN,1 �= 0





Coupling

Sit
es

1 2

N
N

1-

...

...



Coupling

Sit
es

1 2

N
N

1-

...

...



Katsura (2011), Maruyama, Katsura, Hikihara (2011)

Provided

        annihilates      ’s vacuum

    Either          ’s vacuum is unique
is bounded below

Hc

HSSD

|vac�

HSSDor

|vac�                                       HSSDis also ’s vacuum





=
2�

�

�
L0 + L̄0

�
� �c

6�

=
2�

�

�
L±1 + L̄�1

�
Hc

Hc
’s vacuum

sl(2,c)     invariance 

2D Cft On A Cylinder



=
2�

�

�
L0 + L̄0

�
� �c

6�
=

2�

�

�
L±1 + L̄�1

�
Hc

HSSD|0� =
E0

2
|0�

H. Katsura, J. Phys. A: Math. Theor. 45 (2012) 115003.



=
2�

�

�
L0 + L̄0

�
� �c

6�
=

2�

�

�
L±1 + L̄�1

�
Hc

HSSD|0� =
E0

2
|0�

H. Katsura, J. Phys. A: Math. Theor. 45 (2012) 115003.



Implication For String Theory?

Non-Trivial Modification (Deformation)

World Sheet Dynamics Of D-Brane
Open/Closed 

Duality

Affects Boundary Condition



Implication For String Theory?

Non-Trivial Modification (Deformation)

World Sheet Dynamics Of D-Brane
Open/Closed 

Duality

Affects Boundary Condition

Worth Further Exploration

Modification Of World Sheet Metric



Let Me Elaborate

Understanding Non-perturbative dynamics 
in terms of the world sheet gravity

Boundary condition — set by hand 
	 	  Compartmentalize characteristic physics 
	 	  Useful to concentrate each idiosyncrasy
Often non-perturbative effects involve different 
boundary conditions 
	 	  D-brane, open closed duality



and see if the deformed lagrangean generate H
SSD

. In (25), a parameter ↵ that represents
the deformation is introduced. r should be a number less than unity which may depend on
the value of ↵. N is the normalization for G and also may depend on ↵. Since we would
like to recover the original lagrangean as we turn ↵ to be zero, we expect that r ! 0 and
N ! 1 as ↵ ! 0. Now the deformed lagrangean L
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ā
n

+
1
2
ā2
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Now we can proceed further to evaluate the expression for the lagrangean that corresponds
to the deformed hamiltonian HSSD ⇠ L0 + L̄0 � 1
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4⇡g

.

When a
n

’s and ā
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by the use of (23), (15), (21).
Thus H

↵

varies from the original free Hamiltonian to sine square deformed one up to
the overall 1

2 factor as we change ↵ from 0 to 1. Therefore, the case of interest is ↵ = 1
and then (eq:rNsol) yields r = 1. From (25), this results

and the brief description of the results are in order. First, we found the lagrangean
corresponds to HSSD is obtained by taking ↵ to 1 in the following expression:

L
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(36)
and
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↵
, N ⌘ 1p
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. (37)

One can readily see the g00 component of the world sheet metric in the lagrangean, namely
f

t

diverges severely as we apply sine square deformation. This is in some sense expected
because at SSD point there occurs an event as singular as the change of the boundary
condition.

One can apply the following sl(2, C) transformation to (the holonomic part of) H0

obtaining

e�a

L1�L�1
2 L0e

a

L1�L�1
2 = cosh aL0 � sinh a

L1 + L�1

2
. (38)

The righthand side of the above would have correspond to HSSD if cosh a = sinh a, which is
a direct contradiction with the identity cosh2 a� sinh2 a = 1. One, therefore, need to take
a ! 1 and suitably rescale. Hence HSSD is not connected with H0 through the ordinary
sl(2,c) transformation, but with certain limiting procedure.

HSSD have the following di↵erent vacua other than |0i

eL�1 |hi, (39)

where |hi is the state corresponds to the primary fields of CFT. However the norm of (39)
is divergent. One also need to certain limiting process to properly define (39).
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ā2

0

)

. (18)

Note that a0 = ā0 = ⇡0p
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’s and ā
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We reach the following relation between the Hamiltonian and the Virasoro operators:
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up to the constant, which is irrelevant in the discussion below.
Now let us turn things around and consider what kind of terms would appear if the

Hamiltonian contains L1 and L�1. From the particular relations among (19)and (20), like
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Now we can proceed further to evaluate the expression for the lagrangean that corresponds
to the deformed hamiltonian HSSD ⇠ L0 + L̄0 � 1

2(L1 + L̄1 + L�1 + L̄�1).
We might, then, expect that the corresponding deformed lagrangean may take more

general form like;
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Let us postulate the following F (x) and G(x):

F (x) = N
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r|k|e2⇡ikx/` and G(x) = 1� ↵ cos
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, (25)
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ā2

0. (20)

We reach the following relation between the Hamiltonian and the Virasoro operators:

H0 =
2⇡

`

�

L0 + L̄0
�

, (21)

up to the constant, which is irrelevant in the discussion below.
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Now we can proceed further to evaluate the expression for the lagrangean that corresponds
to the deformed hamiltonian HSSD ⇠ L0 + L̄0 � 1

2(L1 + L̄1 + L�1 + L̄�1).
We might, then, expect that the corresponding deformed lagrangean may take more
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HSSD is the Hamiltonian corresponds to the system that sine square deformation is applied
as in (??). If one write the vacuum of the original system as |0i and its energy as E0 = � ⇡c

6L

so that
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, (35)

by the use of (23), (15), (21).
Thus H

↵

varies from the original free Hamiltonian to sine square deformed one up to
the overall 1

2 factor as we change ↵ from 0 to 1. Therefore, the case of interest is ↵ = 1
and then (eq:rNsol) yields r = 1. From (25), this results

and the brief description of the results are in order. First, we found the lagrangean
corresponds to HSSD is obtained by taking ↵ to 1 in the following expression:
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')} ,where f
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k2Z
r|k|e2⇡ikx/l,

(36)
and

r ⌘ 1�p1� ↵2

↵
, N ⌘ 1p

1� ↵2
. (37)

One can readily see the g00 component of the world sheet metric in the lagrangean, namely
f

t

diverges severely as we apply sine square deformation. This is in some sense expected
because at SSD point there occurs an event as singular as the change of the boundary
condition.

One can apply the following sl(2, C) transformation to (the holonomic part of) H0

obtaining

e�a

L1�L�1
2 L0e

a

L1�L�1
2 = cosh aL0 � sinh a

L1 + L�1

2
. (38)

The righthand side of the above would have correspond to HSSD if cosh a = sinh a, which is
a direct contradiction with the identity cosh2 a� sinh2 a = 1. One, therefore, need to take
a ! 1 and suitably rescale. Hence HSSD is not connected with H0 through the ordinary
sl(2,c) transformation, but with certain limiting procedure.

HSSD have the following di↵erent vacua other than |0i

eL�1 |hi, (39)

where |hi is the state corresponds to the primary fields of CFT. However the norm of (39)
is divergent. One also need to certain limiting process to properly define (39).
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and see if the deformed lagrangean generate H
SSD

. In (25), a parameter ↵ that represents
the deformation is introduced. r should be a number less than unity which may depend on
the value of ↵. N is the normalization for G and also may depend on ↵. Since we would
like to recover the original lagrangean as we turn ↵ to be zero, we expect that r ! 0 and
N ! 1 as ↵ ! 0. Now the deformed lagrangean L
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, where we attach the subscript ↵ for
the reminder of the parameter, can be expressed in terms of the Fourier modes �̇
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Note that a0 = ā0 = ⇡0p
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When a
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’s and ā
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follows;
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We reach the following relation between the Hamiltonian and the Virasoro operators:
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up to the constant, which is irrelevant in the discussion below.
Now let us turn things around and consider what kind of terms would appear if the
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L1 =
1
2

X

m2Z
a1�m

a
m

=
1
2

X

m2Z

✓

�p⇡gi (1�m) �1�m

+
⇡

m�1p
4⇡g

◆

⇥
✓

�p⇡gim�
m

+
⇡�mp
4⇡g

◆

,

(22)
it is easy to see that the following relation holds:

2⇡

`

⇣

L1 + L̄1 + L�1 + L̄�1

⌘

=
1

2g`

X

n2Z

n

⇡
n

⇡�(n+1) + ⇡
n

⇡�(n�1)

+ (2⇡g)2n (n + 1) �
n

��(n+1) + (2⇡g)2n (n� 1) �
n

��(n�1)

o

. (23)

Now we can proceed further to evaluate the expression for the lagrangean that corresponds
to the deformed hamiltonian HSSD ⇠ L0 + L̄0 � 1

2(L1 + L̄1 + L�1 + L̄�1).
We might, then, expect that the corresponding deformed lagrangean may take more
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Let us postulate the following F (x) and G(x):

F (x) = N
X

k2Z
r|k|e2⇡ikx/` and G(x) = 1� ↵ cos

2⇡x

`
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n

’s are treated as operators, they can form Virasoro operators as
follows;

L
n

=
1
2

X

m2Z
a

n�m

a
m

(n 6= 0) , L0 =
X

n>0

a�n

a
n

+
1
2
a2

0 (19)

L̄
n

=
1
2

X

m2Z
ā
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Now we can proceed further to evaluate the expression for the lagrangean that corresponds
to the deformed hamiltonian HSSD ⇠ L0 + L̄0 � 1

2(L1 + L̄1 + L�1 + L̄�1).
We might, then, expect that the corresponding deformed lagrangean may take more
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Let us postulate the following F (x) and G(x):
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by the use of (23), (15), (21).
Thus H

↵

varies from the original free Hamiltonian to sine square deformed one up to
the overall 1

2 factor as we change ↵ from 0 to 1. Therefore, the case of interest is ↵ = 1
and then (eq:rNsol) yields r = 1. From (25), this results

and the brief description of the results are in order. First, we found the lagrangean
corresponds to HSSD is obtained by taking ↵ to 1 in the following expression:
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One can readily see the g00 component of the world sheet metric in the lagrangean, namely
f

t

diverges severely as we apply sine square deformation. This is in some sense expected
because at SSD point there occurs an event as singular as the change of the boundary
condition.

One can apply the following sl(2, C) transformation to (the holonomic part of) H0

obtaining

e�a

L1�L�1
2 L0e

a

L1�L�1
2 = cosh aL0 � sinh a

L1 + L�1

2
. (38)

The righthand side of the above would have correspond to HSSD if cosh a = sinh a, which is
a direct contradiction with the identity cosh2 a� sinh2 a = 1. One, therefore, need to take
a ! 1 and suitably rescale. Hence HSSD is not connected with H0 through the ordinary
sl(2,c) transformation, but with certain limiting procedure.

HSSD have the following di↵erent vacua other than |0i

eL�1 |hi, (39)

where |hi is the state corresponds to the primary fields of CFT. However the norm of (39)
is divergent. One also need to certain limiting process to properly define (39).
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Thus H

↵

varies from the original free Hamiltonian to sine square deformed one up to
the overall 1

2 factor as we change ↵ from 0 to 1. Therefore, the case of interest is ↵ = 1
and then (eq:rNsol) yields r = 1. From (25), this results
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One can readily see the g00 component of the world sheet metric in the lagrangean, namely
f

t

diverges severely as we apply sine square deformation. This is in some sense expected
because at SSD point there occurs an event as singular as the change of the boundary
condition.
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The righthand side of the above would have correspond to HSSD if cosh a = sinh a, which is
a direct contradiction with the identity cosh2 a� sinh2 a = 1. One, therefore, need to take
a ! 1 and suitably rescale. Hence HSSD is not connected with H0 through the ordinary
sl(2,c) transformation, but with certain limiting procedure.

HSSD have the following di↵erent vacua other than |0i

eL�1 |hi, (39)

where |hi is the state corresponds to the primary fields of CFT. However the norm of (39)
is divergent. One also need to certain limiting process to properly define (39).
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by the use of (23), (15), (21).
Thus H

↵

varies from the original free Hamiltonian to sine square deformed one up to
the overall 1

2 factor as we change ↵ from 0 to 1. Therefore, the case of interest is ↵ = 1
and then (eq:rNsol) yields r = 1. From (25), this results

and the brief description of the results are in order. First, we found the lagrangean
corresponds to HSSD is obtained by taking ↵ to 1 in the following expression:

L
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. (37)

One can readily see the g00 component of the world sheet metric in the lagrangean, namely
f

t

diverges severely as we apply sine square deformation. This is in some sense expected
because at SSD point there occurs an event as singular as the change of the boundary
condition.

One can apply the following sl(2, C) transformation to (the holonomic part of) H0

obtaining

e�a

L1�L�1
2 L0e

a

L1�L�1
2 = cosh aL0 � sinh a

L1 + L�1

2
. (38)

The righthand side of the above would have correspond to HSSD if cosh a = sinh a, which is
a direct contradiction with the identity cosh2 a� sinh2 a = 1. One, therefore, need to take
a ! 1 and suitably rescale. Hence HSSD is not connected with H0 through the ordinary
sl(2,c) transformation, but with certain limiting procedure.

HSSD have the following di↵erent vacua other than |0i

eL�1 |hi, (39)

where |hi is the state corresponds to the primary fields of CFT. However the norm of (39)
is divergent. One also need to certain limiting process to properly define (39).
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