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O: INTRODUCTION

Calorons are solutions of the anti-self dual Yang-Mills theory in R? x !,
It 1s supposed that the calorons give connection between the instantons and the monopoles.

<> It 1s well known that calorons can be produced generally through the Nahm construction, in
which the dual space description of the gauge fields, called the Nahm data, plays central role.
The transformation from the dual space into the configuration space 1s called the Nahm
transform.

<> The Nahm data of calorons have usually the monopole limit as well as the instanton limit.
However, the Nahm data of 3-caloron with C;-symmetry (i.e. cyclic 3-caloron) does not have
the monopole limit.
In this poster, we perform numerical Nahm transform and visualize the action densities of
the cyclic 3-calorons. We discuss the behavior of the cyclic 3-caloron on the configuration
space.

[: WHAT IS A CALORON

Calorons are finite solutions to the anti-self dual Yang-Mills equations on R® x S!.

Action :S = fR3 d*x tr F,, FH,

u,v=1,2734.

F,, =0,A,—0/A,+[A,, A/]: field strength.
A, € G :gauge field, G : Lie algebra

x S'1

Calorons satisfy the Anti-self dual equations.
S = Tr% fd4x tr[*F,,, F*"], minimum,

D, F* =0,

ASD(Anti-self dual) equations : F,, = +'F,,, = _ .
satisfy the Yang-Mills eq.

kv . 1 uvap
Hodge dual : "F*" := 3 &% Fop. B.J. Harrington and H. K. Shepard, Phys. Rev. D 17 (1978) 2122-2125;

ibid. 18 (1978) 2990-2994.

The calorons are closely related to monopoles and instantons.

Now, let 8 be period of S'. When S goes to infinity, S'is identified as R, then in this limit
caloron corresponds with instanton. This limit is called "instanton limit" of the calorons.
On the other hand, when 3 goes to zero, S ' shrinks to a point, then in this limit caloron
corresponds with monopole. This limit i1s called "monopole limit" of the calorons.
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I[I: NAHM CONSTRUCTION

Nahm construction 1s a complete construction of the caloron from "Nahm data”.

In the Nahm construction, we solve the Nahm equations which 1s quite easy to treat compared
with ASD equations. The Nahm equations and the ASD equations constitute a dual structure.
We are able to get the Nahm data in terms of solving the Nahm equations, which corresponds
the gauge field on dual space.

After getting the Nahm data, we pull the data from dual space back to configuration space.
This transform 1s called "Nahm transform".

/—\ —— Nahm transform |

4-dimension 1-dimension

|
Configuration Dual space
space 1:1 Nahm equations
e %Ti = eiulT), Tl = i[Ta, T =0,
Fuy = £"Fpy. {Ti(—llo) — Ti(uo) = 5tr (O'iWTW)-
gauge field A,

Nahm data 7, W

W. Nahm, The construction of all self-dual monopoles by the ADHM method, in

"Monopoles in Quantum Field Theory”, Proceedings of the monopole meeting in
Trieste 1981, World Scientific, Singapore, 1982.

[I-1 :Nahm construction of the SU(2) massless k-caloron

For simplicity, we consider the case of SU(2) gauge group and also calorons of the massless limit.

k € Z, :caloron’s instanton charge, [ = 1, 2 :index,
s € (=1, 1) : dual space coordinate, ugy € (0, 1) : scale parameter

We introduce the Nahm data for the caloron, which is equivalent of the gauge field on dual space.
Caloron Nahm data usually consists of two elements; the bulk data and the boundary data,
which each satisfy Nahm equations.

Nahm data 7,(s, x*) :bulk, W(uo) :boundary

T, + k X k matrix, . [bulk Nahm-eq. : £7; = 5ijulT), Tl = ilT3, Ti] = 0.
W : 2k X 2 matrix > boundary Nahm-eq. : T;(—uo) — T;(up) = %tl'g (O'i Al W) .
o; . Pauli matrices
e, = (—ioj, 12) : quaternion basis

Once we obtain the Nahm data, we perform the Nahm transform by using such data to get
the caloron gauge field.

N aﬁm transform

d
Weyl-eq. : (12kd— —i(T,(s) + x,1;) ® eﬂ) w = iWivd(s — o).
s

zero modes u; : 2k-vector, v; : 2-vector

normalization : f uZubds + VZVb = Oup.

l

gauge field : (Au(x)) = fulé‘uubds +V0,v,. a,b=1,2.
. 1

7

Usually 1t 1s impossible to perform the Nahm transform analytically, because we need to treat
the Weyl equation which 1s coupled system of the ordinary differential equations.
So we consider performing the Nahm transform numerically.

[1-2: How to numerically solve the Wevl-eq.

The essential point of the numerical Nahm transform is the method to solve the Weyl equations.
A key point of the strategy is that we regard the boundary Weyl equations as boundary

conditions for the bulk Weyl equations.
Weyl-eq. : (lzk% — (T, (s) + x,1;) ® eﬂ) w = iW'v,s(s — Ho)-
bulk Weyl-eq. : (1o % — i(T,(s) + x,10) ® ¢,,) w =0,
diegompose {boundary Weyl-eq. : w(—o) — w(up) =: Au; = iW'v;.

u; : bulk zero modes, v; : boundary zero modes

<> Strategy of the numerical solution of the Weyl-eq. ~
C First, we find solutions to the bulk Weyl equations.

C Next, we solve the boundary Weyl equations with use of a degree of
freedom of the linear combinations of the bulk solutions.

\_ /

ITT: NAHM DATA
[TI-1: Conditions of the Nahm data

As 1s well-known that the caloron Nahm data and the monopole Nahm data has close relation, so
1t 1s useful to summarize now.

In the massless calorons and monopoles Nahm data we are able to take T4 = 0 by using the gauge
transformation.

Monopole Nahm data Caloron Nahm data

Caloron Nahm data consists of two

Monopole Nahm data 7i(s) satisfy: elements:bulk data T;(s)

d ]

d_Ti (s) = e [Tj (s). T} (s)] | and bo.undary data W.
S Bulk Nahm data satisfy:
()= T7 d ]

file) = £y () TTi(5) = e |Tis). Tu(s)].

Ti(=s) ="Ti(s).

O Tis) =T ()

Ti(s) has simple poles at s = +1. O Ti=s) = "Ty(s)
The matrix residues of (71,73,7T3) at each

pole form the irreducible k-dimensional
representation of su(2).

C Boundary Nahm data satisfy:
1
Ti(~po) = Tiluo) = tra (i W'W).

Caloron bulk Nahm data does not have to have simple pole at s = -1, 1.

We are easily to expect that the condition of the caloron bulk data 1s equivalent to a part of the
condition of the monopole data because the conditions for the bulk data are almost equivalent.
So 1f we know a monopole Nahm data 7;(s), then 1t can directly be applied for caloron bulk Nahm
data.

Next, we introduce two types of the Nahm data. The first type has the monopole limit, which is
called “symmetric 3-caloron”. And second type doesn’t have the monopole limit, which is called
“cyclic 3-caloron”.

[T1-2: Symmetric 3-caloron
R.S. Ward, Phys.Lett.B 582 (2004) 203.

Bulk Nahm data

0 0 0) 0 0 b(s) + 2ia(s)
T,(s) = |0 0 b(s) — 2ia(s) |, Ta(s) = 0 0 0 ,
0  b(s)+ 2ia(s) 0 b(s) — 2ia(s) O 0
0 b(s) — 2ia(s) O
T5(s) = | b(s) + 2ia(s) 0 0f.
K 0 0 0 /
w g (2(s +3)) " | f {\
a(s) = — - , b(s)=— - : | | h
129 (2(s + 3)) V39 (£(s +3)) | s |
. L
= F(%)F(%) "' ". 10:- ." ".
4Nm | -
Here ¢ 1s the Weierstrass p-function satisfying,
40’ (x)* = 4p(x)® + 4. T
-15 -1.0 -0.5 0.5 1 1

Fig: absolute value of b(s) + 2ia(s)

)
Boundary Nahm data: W = /1(12 1073 —i0'2). where A := 2 +/a(ugp). }
.

The Nahm data of symmetric 3-caloron has the simple pole ats = —land s = 1.

[T11-3: Cvyclic 3-caloron

A. Nakamula and N.Sawado, N.Phys.B 868 (2013) 476-491.
(_ Bulk Nahm data \

1 0 f+_if— fO 1 fO _f+_if— 0
TIZE f++if— 0 f-l‘_i—a Tz:i _f++if— 0 f++if—,
Jo fe +if- 0 0 fe —if- —fo

[ P 0 i(po—p1)
I3 = — 0 2p> 0 :

—i(po—p1) O D where f: = (fi £ f2) /2.

o /

— e VHGDOGs) L VD (s2),(so) _d . 9(s)
N EE A N T E pa(s) = o log 5o
. \/ﬁv(So)ﬁv(Sl) o i y(s0) L i y(s1)

,(s) are the Jacob1 theta functions (and now, we omit modulus parameter q).
And v=0or3, 0<g<l1

Here, C := ¢ (0)/9(1/3) € iR is pure imaginary constant and s; := s + j/3.



IV: ACTION DENSITIES

We will discuss the behavior of limits on the configuration space by performing the numerical Nahm

E it transform for the Nahm data.
o \ /\ | /\ It 1s more easy and straightforward to see the existence of the limits of the solutions when we go to
. I ’ \ oy \/ 0, % V/ P, Y analysis 1n the configuration space, in addition to the dual space discussion.

<> Action isosurface at x* =t = 0.0

“t Instanton limit Monopole limit
p2(s) po(s) — p1(s) 1o = 0.0 | —0. —0. 1o = 1.0

j | S Symmetric
) 2 . | 3-caloron
/\/\ -l.o“"_-;s\'---—}ﬁg....?5,_,_1_0
o S \ i .

- = 3-caloron
Figs: functions of the cyclic 3-caloron Nahm data for 9. q=0.1
€ Cyclic 3-caloron’s Nahm data does not have simple poles at s = +1.
. B Well known caloron solutions, for example the symmetric 3-caloron exist in whole interval of .
* Boundary Nahm data: W(uo) = (4.p.%). (10) = —F- (o) On the other hand, the cyclic 3-caloron vanishes at 1o equal 0.5 and also 1.0. So this property 1s the
A=id (o] +02),p = —%g(ﬁlo)lz, : JH0T 1_ o notable feature of the cyclic 3-calorons.

_ A7 = h(po) == —= (po(po) — p1(to)) - :

N X =—idy (o1 —02), ) 2 <> CYCllC 3-calorons

1n more detail

/1
@
parameter : ¢ = 0.1, s=7.0

We find that the action density / \\ / | / \\w
gradually shrinks as o grows and | - /

finally disappears at g = 0.5.
After passing g = 0.5, 1t appears

{ 1.Theta functions condition

<> Conditions that the boundary data are well-defined.
Figs plot function Po(uo) — p1(to) j

{Quaternion’s component }

A3 =h(uo) A A1 € R = h(ug) > 0.

@mahm data }

Lo = 0.49 o = 049999 g = 0.50

: | again and increases the size as (o ~ - o G
grows, and repeatedly 1t reduces / I \w / IS \w / \ \w / \ \w
and finally vanishes at o = 1.0. A N N/ ¢ ey Sy
In the case of %, In the case of ¥ T € & \
Th re the condition: Poo) — pi(uo) <0 = o, =03 H0 €000 AN Y A4 Ny
us we require the condition: Po{to) — P1{Ho y = 9o, 1o € (0.5, 1.0) 110 = 0.90 110 = 0.99 110 = 0.99999 1o = 1.00

{ 2.Boundary data condition [V-1: “exterior sectors”

We require a condition : "y € Ry, W(ug) # O.

<> The range of regular on the fundamental interval I = (—puo, o).
" W(up) = 0 = boundary zero mode v; are not well-defined at uy.

(. Symmetric 3-caloron C Cyeclic 3-caloron

Figs plot functions of the boundary Nahm data
0 < pop < 1.0 0 <o <00

But now, we find that boundary
data W(0.5) = W(1.0) = 0. | /\
Consequently, the cyclic 3-caloron | PP S |
Nahm data is not well-defined i el U I A
at uo = 0.5, 1.0. i
L Fig: the g(uo) as a function of Ho. Fig: the h(up) as a function of M

[1T-4: Instanton limit

We discuss the limiting behavior of the calorons from viewpoint of the difference of Nahm As a concrete example of which the solution has a monopole limit, first we consdier the symmetric
data of symmetric 3-caloron and cyclic 3-caloron. 3-caloron. The Nahm data have simple pole at s = +1. Hence, the scale parameter (tocan be taken
the values in the range from zero to one. In other words, 1t has upper bound which corresponds to
the monopole limit.

For the cyclic 3-calorons considering here, however, the Nahm data is regular in dual space from
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The instanton limit 1s a limit that the scale parameter (o and s stmultaneously go to zero.
In this limit, the Nahm data of caloron equal an ADHM data of the instanton.

Nahm data of the caloron ADHM data of the instanton zero to infinity because they do not have the pole in whole dual space.
bulk data T} (s) o, S — 0 Consequently, tocan be taken the values from zero to infinity. So we can consider an external
boundary data W (1) ’ ADHM data A region where the /0 has the value greater than 1. We call it as "exterior sectors".

Now we summarize this issue in the table.
ADHM data: A — ( W ) 4 ( 0 ) _ ADHM data correspond to the Nahm data
;

iT;(0) ® 1, ® zte, of the Instanton. Bulk data with pole Bulk data without pole
:VA WlS the loweSt OI‘deI' 1n lJ/O fOI' the boundary data. Does the caloron have the
&) Symmetric 3-caloron \ Q Cychc 3-caloron monopole limit?
/ 12 750-3 _7’0-2\ 225\1 (0’1 + 0'2) Qﬁo —2i5\1(0’1 — 0'2)\
A — w 0 03 109 A — L i(fdoo — 2p%03) ifY (o1 — 02) ifo1
p— \/g ZO'3 0 iO'l ) 2 Zf_?_(O'l —0'2) ipgo'?) zf_?_(—o'l —|-O'2)
\7;02 ic; 0 ) ifgor if$ (o1 +02) —i(fo2 + 3p503)
1 1
w = F(g)r(g)’ 402 = _C2 (ﬁv(’())z _ 1,(0) ff ‘= f+(0)a
\\ 4+n / b ,(0) () |’ 79 = £o(0).
e L, [9,0) Py = p2(0). N . . .
In the both cases, the ADHM data exist. \\ Poi= 7= (=38,(x)) 0 / This1s a k.md of mutation from the knoyvn Nahm data which have t}.le.mon.opo.le limit. Because
Therefore, from viewpoint of the Nahm data, the behavior of the caloron on the exterior sectors wasn’t known, so 1t 1s quite important to study
we find that the both calorons have the instanton limits. such a new class of solutions.
Next, we are able to discuss the behavior of the caloron on the exterior sectors in configuration
IT1-5: MOHODOIC limit space by performing the numerical Nahm transform for cyclic 3-caloron Nahm data.

The monopole limit 1s a limit that scale parameter 1o goes to one.
It 1s needed that the bulk Nahm data of the caloron should coincide with the monopole Nahm
data 1n this limat.

Nahm data of the caloron Nahm data of the monopole - @ < &{/ L %’ < % | ( /] & ‘é/ | % ‘é

IV-2: Action densities on exterior sectors
parameter : ¢ = 0.3, s=7.0

bulk data Tj(s), po — 1 ‘ Nahm data T;(s)
boundary data W (1) ~ (W(1) is omitted.) ) =02 =12 =22 =32 w0 =07  wo=17 =27 =37
<>The condition of bulk Nahm data at the monopole limit AT SN S TS T P B i e Vi hie VWi e
(_ Ti(s) has simple poles at s = +1.  The matrix residues of (71,72, 7T3) at each pole form - _e‘ _t \_ ¢ | Ve V& & \S®/

the irreducible k-dimensional representation of su(2).

Ho = 0.4 Mo = 1.4 Ho = 2.4 Mo = 3.4 o = 0.9 o = 1.9 o = 2.9 o = 390

C Symmetric 3-caloron

20

N . Cyclic 3-caloron (. We see a periodic behavior of the isosurfaces with fixed ro (without (0.0,0.5))

Jo(s) fi(® £-(s) . o . and po+mn, (n=1,2,...).
- " C The action densities reduce gradually asn increases.

\ /\ / / \ / \ | / \ / \ /\ | /\ (. We expect the action density tends to vanish for (o — o©.
. VO x. W . T \vA

v V: SUMMARY

13F

p2(s) po(s) — pi(s)
T S T /h\ [\ <> We have constructed a general scheme for numerical Nahm transform of k-caloron.
\Jrig: function of the symmetric 8-caloron Nahm data) . / \ | / .\ o 'é‘\\ | 7 “\ / <) We applied the numerical Nahm transform to cyclic 3-caloron which doesn't have monopole
. it B G limi j j It.
The symmetric 3-caloron Nahm data have the L i ~ imit and got some interesting result
simple pole. So we find that the symmetric 3- Figs: functions of the cyclic 3-caloron Nahm data . We showed that action density of the cyclic 3-caloron disappears at uo = n/2.

caloron have the monopole limit, too. . . .
. We plotted of the action density for larger values of wo, called "exterior sector", and

On the other hand, one can easily see that Nahm data of cyclic 3-caloron have no pole. found the quasi-periodic behavior of the density as o varies.

Thus case of the cyclic 3-caloron, we conclude that the monopole limit does not exist.




