4D N=1 gauge theories from M5 branes on A_k singularity with orientifold

Shoichi Kanno (Tokyo institute of Technology)

(1) introduction

6D N=(2,0) SCFT on Riemann surface

 \rightarrow 4D N=2 theory

This procedure is very successful for understanding duality network of 4D N=2 theories.

(2) Type IIA brane system set up

We want to generalized to 4D N=1			
6D N=(1,0) SCFT on Riemann surface			
\longrightarrow 4D N=1 theory			
So many 6D N=(1,0) SCFT [Heckman et al.]			
[Gaiotto Razamat] M5 on C^2/Z_k orbifold "class S _k "			
In this talk, we further impose R^5/Z_2 orentifold action			
In addition, we restrict the case for odd k k=2m+1			

(3) Orbifold and Orientifold projection

 C^2/Z_k orbifold action $Z_1 = x^5 + ix^6$ $Z_2 = x^7 + ix^8$

$(z_1, z_2) \rightarrow (\xi z_1, \xi^{-1} z_2) \quad \xi = \exp(2\pi i/k)$

orientifold action

 $x^{5,6,7,8,9} \rightarrow -x^{5,6,7,8,9}$ + orientation change of strings fixed plane $x^{5,6,7,8,9} = 0 \longrightarrow 04$ -plane

two types of O4-plane distinguished by RR-charge: O4⁺ and O4⁻ across a NS5 \longrightarrow O4⁺ and O4⁻ interchange

Thus, we found original theory : N=2 SU(N) conformal quiver N=2 SU $(N)_a$ vectormultiplet $(V^{(a)}, \Phi^{(a)})$ $(a=1, \cdots, n)$ $SU(N)_a \times SU(N)_{a+1}$ bifundamental hypermultiplet $(Q^{(a)}, \tilde{Q}^{(a)})$ $(a = 1, \dots, n-1)$ + fund.(antifund.) hyper at end nodes Orbifold projection Orientifold projection (a) spatial rotation spatial rotation charge = R-charge If image of a field is itself, then \longrightarrow $\Phi:1$ Q:-1/2 $\tilde{Q}:-1/2$ (charge of scalar component) (b)action on gauge index gauge node : SU \implies SO (O4⁻) /Usp (O4⁺) for charge (i,j) sector filed $\Psi_{ij} \rightarrow \xi^{i-j} \Psi_{ij}$

$(V^{(a)}, \Phi^{(a)}) \longrightarrow N=1 SU(N)^k$ necklace quiver $\mathcal{N}^{(a)}$ N $(Q^{(a)}, \tilde{Q}^{(a)}) \longrightarrow$ bifundamental chiral which zig-zag back and forth between $\mathcal{N}^{(a)}$ and $\mathcal{N}^{(a+1)}$ Since orientifold action causes $Q \leftrightarrow \tilde{Q}$ identify fields with their orientifold image such situation does not occur for $Q \ Q$

For simplicity, we assign O4⁺ plane to gauge node with integer Z_k charge

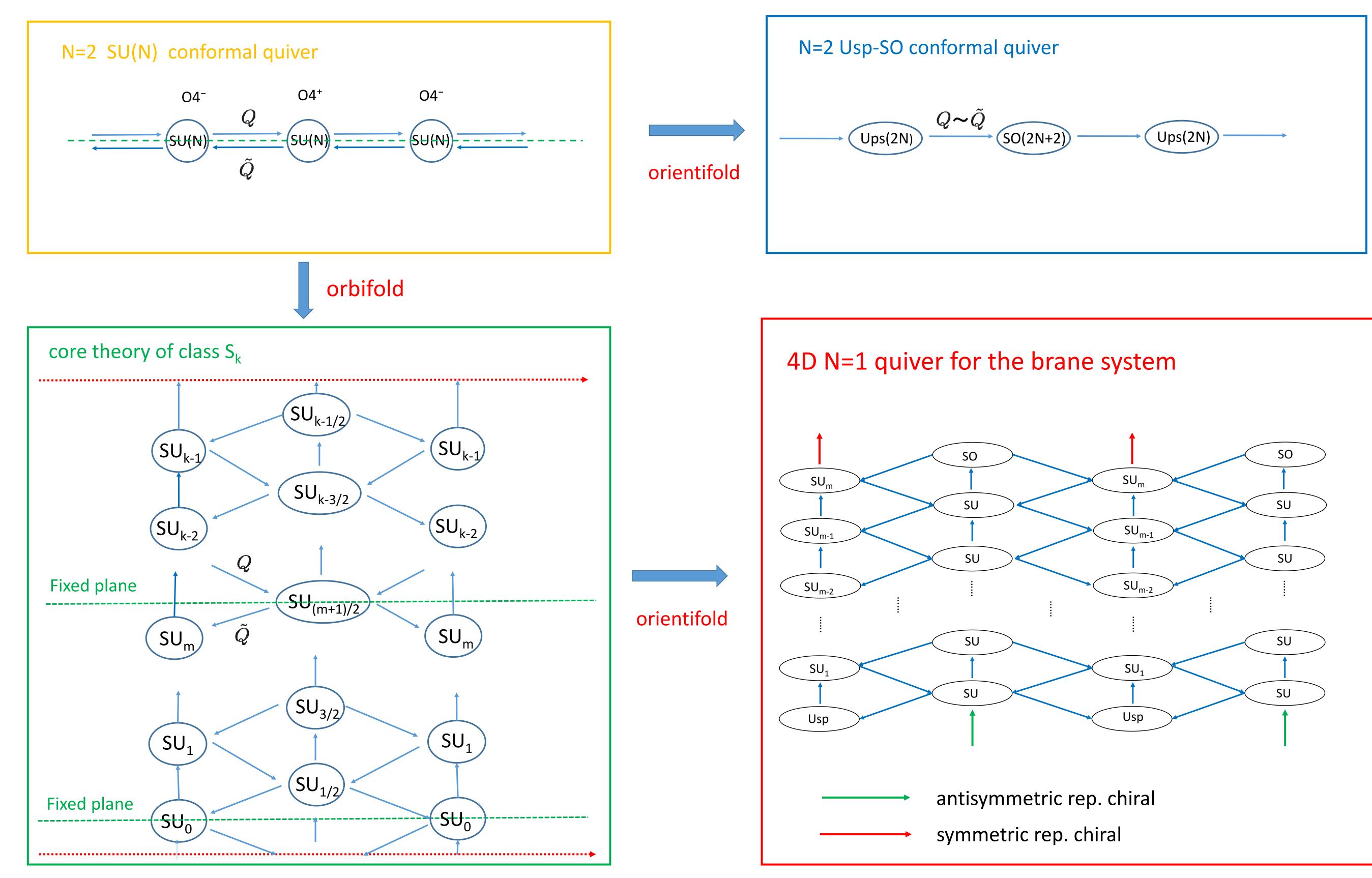
Ν

Ν

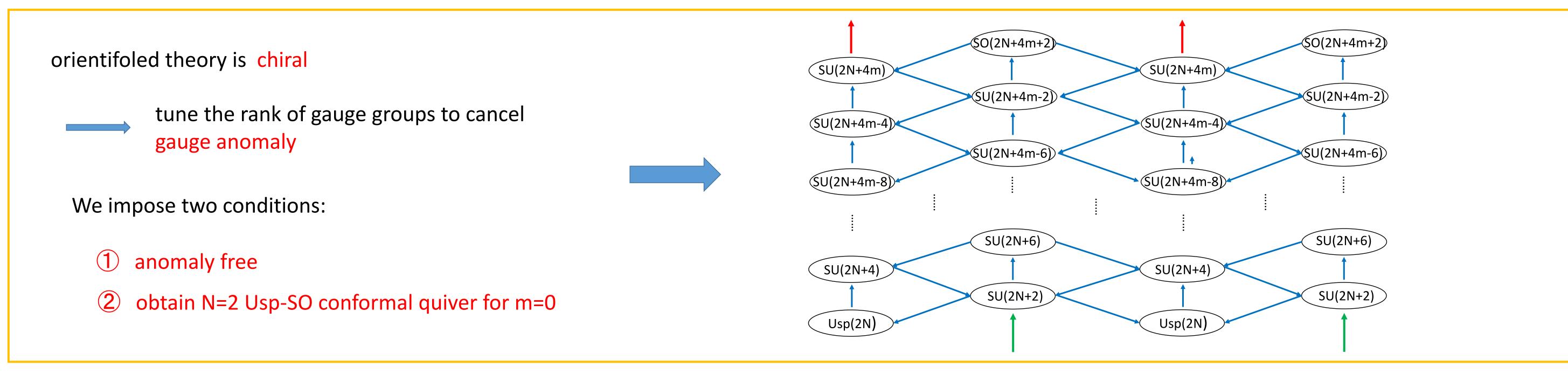
- have half-integer R-charge Q
 - assign (half-)integer charge at even(odd) gauge node

bifundamental Φ \longrightarrow antisymmetric rep.(O4⁻) symmetric rep. (O4⁺)

4Quiver diagram representation of the projection



(5) Anomaly free theory



6 Field content, superpetential

Gauge group

$$\prod_{a \in even} \left\{ \operatorname{Usp}^{(a)}(2N) \times \prod_{i=1}^{m} \operatorname{SU}^{(a)}(2N+4i) \right\} \times \prod_{a \in odd} \left\{ \prod_{i=0}^{m-1} \operatorname{SU}^{(a)}(2N+4i+2) \times \operatorname{SO}^{(a)}(2N+4m+2) \right\}$$

Chiral fields for even a

Superpotential coupling

closed triangle path in quiver = cubic superpotential

for even a

$W^{(a,i)} = \operatorname{Tr} \tilde{Q}^{(a,i)} \Phi^{(a,i)} Q^{(a,i+1)}$

$\Phi^{(a,m)}$	(🔲 , 🔲) of	$SU^{(a)}(2N + 4m - 2) \times SO^{(a)}(2N + 4m + 2)$
$Y^{(a)}$	of	$\mathrm{SU}^{(a)}(2N+2)$
$ ilde{Q}^{(a,i)}$	(🔲 , 🔲) of	${ m SU}^{(a)}(2N+4i-2) imes { m SU}^{(a+1)}(2N+4i) \ (i=1,2,\cdots,m)$
$Q^{(a,0)}$	(🔲 , 🔲) of	$\mathrm{SU}^{(a)}(2N+2) imes \mathrm{Usp}^{(a+1)}(2N)$
$Q^{(a,i)}$	(🔲 , 🔲) of	$\mathrm{SU}^{(a)}(2N+4i+2) \times \mathrm{SU}^{(a+1)}(2N+4i) \ (i=1,2,\cdots,m-1)$
$Q^{(a,m)}$	(🔲 , 🔲) of	$SO^{(a)}(2N + 4m + 2) \times SU^{(a+1)}(2N + 4m)$

2)

 $\Phi^{(a,i)}$ (, $\overline{\Box}$) of $\mathrm{SU}^{(a)}(2N+4i+2) imes \mathrm{SU}^{(a)}(2N+4i+2)$ $(i=0,1,\cdots,m-1)$

Chiral fields for odd a

 (\Box, \Box) of $\mathrm{SU}^{(a)}(2N+4i) \times \mathrm{SU}^{(a+1)}(2N+4i-2)$ $(i=1, 2, \cdots, m)$ $Q^{(a,i)}$ (\square, \square) of $\mathrm{Usp}^{(a)}(2N) \times \mathrm{SU}^{(a+1)}(2N+2)$ $ilde{O}^{(a,0)}$ (\Box, \Box) of $\mathrm{SU}^{(a)}(2N+4i) imes \mathrm{SU}^{(a+1)}(2N+4i+2)$ $(i=1, 2, \cdots, m-1)$ $ilde{Q}^{(a,i)}$ $\tilde{Q}^{(a,m)}$ ($\overline{\Box}$, \Box) of $\mathrm{SU}^{(a)}(2N+4m) \times \mathrm{SO}^{(a+1)}(2N+4m+2)$

of $SU^{(a)}(2N+4m)$ $X^{(a)}$

 (\Box, \Box) of $\mathrm{SU}^{(a)}(2N+4i) \times \mathrm{SU}^{(a)}(2N+4i+4)$ $(i=1, 2, \cdots, m-1)$ $\Phi^{(a,i)}$

 $\Phi^{(a,0)}$ (\Box , $\overline{\Box}$) of $\mathrm{Usp}^{(a)}(2N) \times \mathrm{SU}^{(a)}(2N+4)$

$(i=0,1,\cdots,m-1)$ $\hat{W}^{(a,i)} = \text{Tr}Q^{(a-1,i)}\Phi^{(a,i)}\tilde{Q}^{(a-1,i+1)}$ $\hat{W}^{(a,m)} = \text{Tr}Q^{(a,m)}X^{(a)}Q^{(a,m)}$ $W^{(a,m)} = \text{Tr}\tilde{Q}^{(a,m)}X^{(a)}\tilde{Q}^{(a,m)}$ for odd a $V^{(a,i)} = \operatorname{Tr} \tilde{Q}^{(a,i)} \Phi^{(a,i-1)} Q^{(a,i)}$ $(i=1,2,\cdots,m)$ $\hat{V}^{(a,i)} = \text{Tr}Q^{(a-1,i)}\Phi^{(a,i-1)}\tilde{Q}^{(a-1,i)}$ $\hat{V}^{(a,0)} = \text{Tr}\tilde{Q}^{(a-1,0)}Y^{(a)}\tilde{Q}^{(a-1,0)}$ $V^{(a,0)} = \text{Tr}Q^{(a,0)}Y^{(a)}Q^{(a,0)}$

(8) Exactly marginal deformation

To identify the 4D theory with compactification of 6D theory on Riemann surface, it must be hold

of exact marginal deformation parameter

of complex structure moduli parameter of Riemann suface

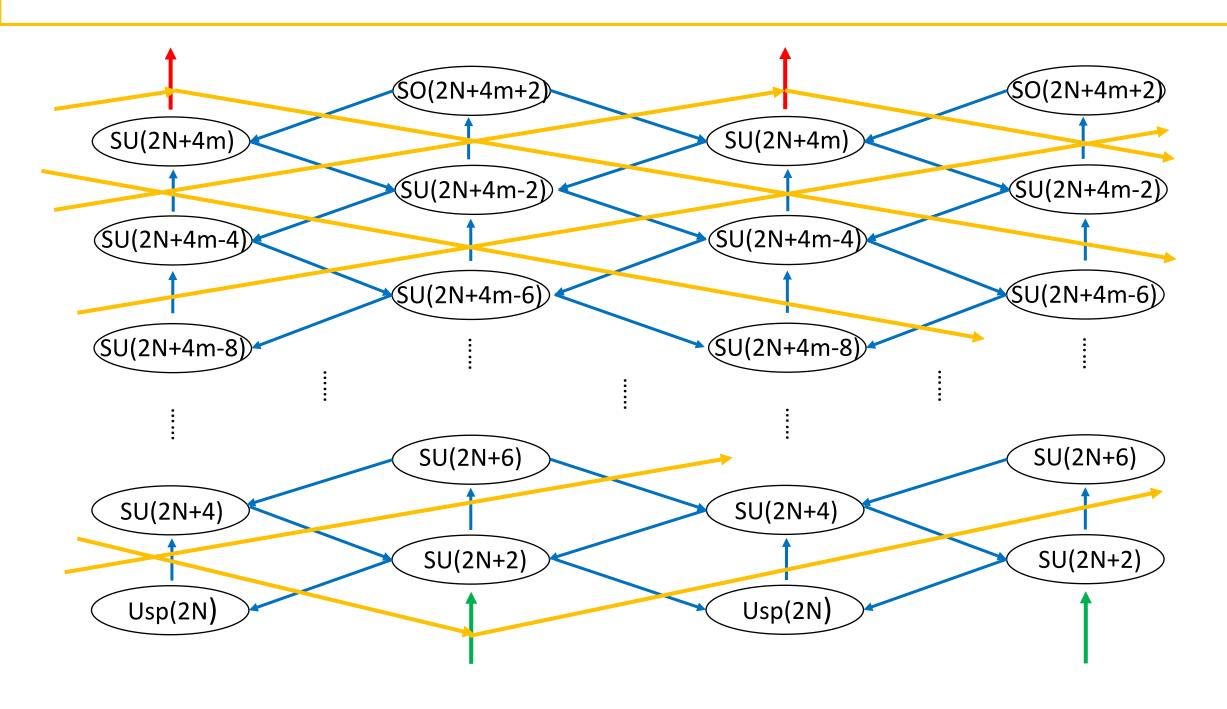
We check it according to Leigh-Strassler argument

7 global symmetry

intrinsic symmetry $\left\{ U(1)^k / U(1) \right\} \times \left[U(1)_t \right] \longleftarrow \Phi$, X, Y⁻¹ Q : 1/2 $ilde{Q}$: 1/2

abelian remnant of global symmetry in 6D theory

U(1) rotation of fields crossing with each orange arrow (k-1 independent ones) (anti)symmetric rep. fields X (Y) have charge 2 and others have charge 1 Sign of charge determined by orientation



scaling coefficients for even a $\gamma(\Phi)$: anomalous dimension of Φ $A(\text{Usp}^{(a)}(2N)) = -1 + (N+1)\gamma(\tilde{Q}^{(a,0)}) + (N+1)\gamma(Q^{(a-1,0)}) + (N+2)\gamma(\Phi^{(a,0)})$ $A(SU^{(a)}(2N+4i)) = (N+2i+1)\gamma(\tilde{Q}^{(a,i)}) + (N+2i+1)\gamma(Q^{(a-1,i)})$ $+(N+2i-1)\gamma(Q^{(a,i)})+(N+2i-1)\gamma(\tilde{Q}^{(a-1,i)})$ $+(N+2i+2)\gamma(\Phi^{(a,i)})+(N+2i-2)\gamma(\Phi^{(a,i-1)})$ $A(SU^{(a)}(2N+4m)) = 1 + (N+2m+1) \left\{ \gamma(\tilde{Q}^{(a,m)}) + \gamma(Q^{(a-1,m)}) + \gamma(X^{(a)}) \right\}$ $2A(W^{(a,i)}) = \gamma(\tilde{Q}^{(a,i)}) + \gamma(\Phi^{(a,i)}) + \gamma(Q^{(a,i+1)})$ $2A(\hat{W}^{(a,i)}) = \gamma(\tilde{Q}^{(a-1,i)}) + \gamma(\Phi^{(a,i)}) + \gamma(\tilde{Q}^{(a-1,i+1)})$ $2A(W^{(a,m)}) = 2\gamma(\tilde{Q}^{(a,m)} + \gamma(X^{(a)})) \qquad 2A(\hat{W}^{(a,m)}) = 2\gamma(Q^{(a-1,m)} + \gamma(X^{(a)}))$

We found the following relation

$$A(\mathrm{Usp}^{(a)}(2N)) + \sum_{i=1}^{m} A(\mathrm{SU}^{(a)}(2N+4i) = \sum_{i=0}^{m-1} 2(N+2i+1) \left\{ A(W^{(a,i)}) + A(\hat{W}^{(a,i)}) \right\} + (N+2m+1) \left\{ A(W^{(a,m)}) + A(\hat{W}^{(a,m)}) \right\}$$

Similar relation holds for odd a. Thus we have n relations

Flavor symmetry

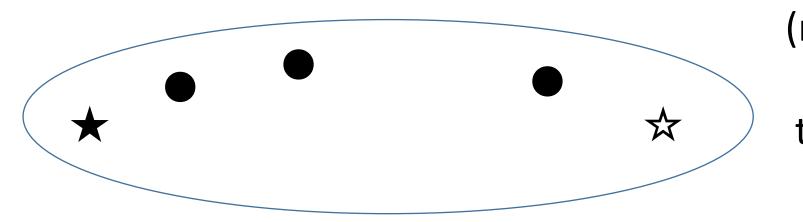
$$U(1)_{\alpha_a}$$
 $Q^{(a,i)}$:+1 $\tilde{Q}^{(a,i)}$:-1 $a=1,2,\ldots,n-1$

+ symmetry associated with both ends of the quiver

Superpotential is invariant in these global symmetry

(9) associated Riemann surface

We identify the quiver theory with a sphere with (n+1) punctures



(n-1) puncture associated with $U(1)_{\alpha_a}$

two punctures associated with ends of the quiver

We can glue punctures (gauging the flavor symmetry) and obtain more general theories in the same way as for N=2 class S theories.

Conjecture

exchange of same type of punctures = duality of the theory

Future work

Check the conjecture in terms of index Closing puncture (giving VEV to meson or baryon op.) How about even k (need additional flavor for anomaly cancellation)