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Cones are critical

•Conic shapes widely appear in 
nature

•Cones are critical geometries where 
the topology changes
– Merger/fragmentation of liquid

– Merger/fragmentation of black hole 
horizon

– Phase boundary



D3/D7 system

•Holographic dual to � � 2 SQCD
– In large �� limit, a probe D7-brane is embedded in 

AdS	 
 �	 geometry

– Fluctuations of the D7-brane = “meson” excitations

•Phase transition by applying electric fields
– Dielectric breakdown due to Schwinger effect

Karch, Katz (2002), Grana, Polchinski (2002), Bertolini et al. (2002)
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Critical embedding in 
the D3/D7 system

•A phase boundary between the Minkowski
embeddings and the BH embeddings
– Two series of the solutions merge

– The shape of the D7-brane is conical

Black hole embedding

Electric field increases

Minkowski embedding Critical embedding



Taylor cone

•A hydrodynamic phenomena, which are used in 
electrospray in material/industrial science

•As an electric field increases the surface of a 
conductive liquid is sharpening, and at a critical 
electric field a cone is formed
– Beyond the critical value, the liquid sprays

Taylor cone

Electric field increases

Ref. R.Krpoun “Micromachined Electrospray Thrusters for Spacecraft Propulsion” (2009)

�



•The first theoretical model of this phenomena is 
given by Taylor (1964)

– He assumed the liquid was a perfect conductor and the 
cone was formed when the surface tension and the 
electrostatic stress equilibrated on the liquid surface

– Repulsive forces between the induced charges cancel 
surface tension forces

•A half-cone angle 49.29° predicted by Taylor is 

very close to experimental results
– This angle is determined by a zero of the Legendre 

polynomial

G.Taylor Proc. R. Soc. Lond. A 280, 383 (1964)

Can we find something like universal properties for conic D-branes?



RR flux background

•D2-brane in a constant Ramond-Ramond (RR) 
flux background in flat spacetime
– The �-dim. bulk spacetime

– Embedding function

– RR field

•The action is a DBI action with a coupling to the 
RR field 

uniform RR flux



Conic solution

•The equations of motion are 

•If we expand ���� around this point, we have a 

critical (conical) solution

The second equation can be integrated 

This equation is singular when �� � � �� � � �1

Half-cone angle 

The apex of the cone is located at � � 0



•This analysis is local
– The global structure of the D-brane depends on 

asymptotic boundary conditions.

– In general, the RR flux does not need to be constant 
and uniform globally.

•If a cone has been formed at a part of the D2-
brane, the cone should be locally identified with 
our solution at that critical point.
– At the critical point, the apex angle can be uniquely 

determined. 



Other examples

•NSNS flux background

– D -brane in a constant NSNS flux

•D3/D7

– Probe D7-brane with worldvolume
gauge fields in 	

	

topology of the cone:

topology of the cone:

The cone angle is unique independent of three parameters (�� , �� , �h)



Universal formula?

•We have three conical D-brane solutions for 
different external forces and couplings
– RR flux, NSNS flux, gravitational field (AdS curvature)

•It is expected that the half-cone angle is 
determined as  

topology of the cone:

• What mechanism determines the angle of conic D-branes?

• Where is the factor of 2 in the square root coming from?



Force balance in Newtonian 
mechanics

•We have two force balance conditions: 
– Normal direction (extrinsic dynamics)

– Radial direction (intrinsic dynamics)

Young-Laplace eq.

Hydrodynamic (elastic) equilibrium

Assuming that the tension is isotropic and its distribution behaves as



Equations of motion for 
generic membranes

•Extrinsic and intrinsic dynamics

Nambu-Goto brane
Extremal surface

External force

Induced metric:

Extrinsic curvature:

Embedding functions:

In general, the energy density is not equal to the tension (negative pressure).



Force balance in curved 
spacetimes

•A membrane in an “axisymmetric” spacetime

Bulk metric:

Induced metric on the memebrane:

We assume the membrane has an isotropic tension on the cone

Embedding functions

tension
stress-energy tensor

Topology of the cone

If the external force is along the axis of the cone, we can combine two equations.

induced metric on the cone



•If we assume that the bulk spacetime is regular 
at the membrane (the membrane does not touch 
event horizons or some singularities) and the 
tension ! plays a dominant role, then we have

•If the tension behaves as ! ∼ �# near the apex of 
the cone � ∼ 0, the angle of the cone becomes 

• The dimension of the spherical part of the cone
• The power of the stress distribution



Stress-energy tensor of the 
various D-branes

•D2-brane in the RR flux

•D$-brane in the NSNS flux

•D7-brane in AdS	 
 �	

isotropic tension

isotropic tension

isotropic tension



Mechanism for the conic D-
branes

•When the isotropic tension vanishes, a cone is 
formed.

•The angle of the cone is universally determined 
by the dimension of the cone and the power of 
the distribution of the tension.
– For the conic D-branes, the power is ½ independent of 

the background fields, which comes from the square 
root of the DBI action 

topology of the cone:



Summary

•We found various conic D-brane solutions, 
whose cone angles obey an universal formula
– The cone is formed at a critical point where the 

brane tension is canceled

•In general, the cone angles are determined by 
simply the local force balance
– It is expected that many conic D-branes other than 

our limited examples exist and our formula is valid

•Beyond the critical value, what happens?
– Spray solution? Funnel solution?



APPENDIX



NSNS flux background

•D$-brane in a constant NSNS flux in flat 

spacetime
– Bulk spacetime

– NSNS field

– Embedding function

•The action is given by DBI action

In contrast to the case of RR flux, no additional coupling term exists.



Conic solution

•In this case there is a critical point at which the 
Lagrangian density vanishes.

•Near this critical point, we can obtain conic 
solution in a similar manner

The equation of motion becomes singular when � � � 1/�

Half-cone angle 

Topology of the cone:

Induced metric:



D3/D7 system

•Probe D7-brane with worldvolume gauge field in 
the AdS	&Schwarzschild 
 �	 geometry

– Bulk metric:

– Embedding functions:

– Worldvolume gauge field: 

•DBI action

�h	is	a	horizon	radius	in	the	usual	Schwarzschild	coordinates



Conic solution

•When the electric field increases, there exists a 
critical electric field at which the Lagrangian
density vanishes
– Critical embedding, which is the phase boundary 

between two series of solutions: BH and Minkowski
embeddings

Half-cone angle 

Topology of the cone:

The cone angle is unique independent of three parameters (�� , �� , �h)



Holographic QCD constructed 
by D3/D7

�� D3-branes

D7-brane

10-dim. flat spacetime

D7-brane

10-dim. 5��	 
 �	

N=4 super Yang-Mills + N=2 quark multiplet

string between D3-branes and D7-brane ⇔ “quark”
fluctuations of D7-brane ⇔ “meson”

DBI action:
Embedding function

quark mass

Large ��
6

meson

Karch, Katz (2002), Grana, Polchinski (2002), Bertolini et al. (2002)

4-dim

A probe D7-brane is 
embedded in 5��	 
 �	



Phase transition by applying 
electric fields

•Schwinger effect

Profile of the brane in the bulk

Effective horizon

:large

current

Electric field

Beyond the critical electric field, an effective horizon emerges on the brane
The electric current becomes  non-zero value = Schwinger effect

Karch, O’Bannon (2007)
Erdmenger, Meyer, Shock (2007)

Albash, Filev, Johnson, Kundu (2007)

Electric field vs current in the boundary

stable

Minkowski embedding

unstable

BH embedding

Schwinger limit


